A novel predictive model for abrasive waterjet deep hole drilling on AL7075 T6 using machine learning and evolutionary algorithmic approach

. 2025 Dec 17 ; 15 (1) : 43951. [epub] 20251217

Status PubMed-not-MEDLINE Jazyk angličtina Země Velká Británie, Anglie Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41408129

Grantová podpora
ORF-2025-164 King Saud University

Odkazy

PubMed 41408129
PubMed Central PMC12711956
DOI 10.1038/s41598-025-28058-7
PII: 10.1038/s41598-025-28058-7
Knihovny.cz E-zdroje

Abrasive Waterjet (AWJ) is a promising non-traditional method for precision cutting of aerospace materials like AL7075 T6. This work explores AL7075 T6 AWJ-based Deep Hole Drilling (DHD) using a full factorial design with accurate modeling and optimization performed through machine learning and evolutionary algorithms. The objective is to investigate the influence of process parameters and to model, and predict the optimal AWJ-DHD settings, such as waterjet pressure, standoff distance, and abrasive mass flow rate, on drilling qualities including geometrical and dimensional precision (kerf angle, kerf ratio), surface roughness, and drilling efficiency. Four machine learning models, Adaptive Boosted Regression (ABR), Extreme Gradient Boosting (XGB), Decision Tree (DT), and Random Forest (RF) were developed with experimental data to enhance prediction accuracy and process efficiency. Among the developed models, RF had the lowest testing error value for all responses with root mean square values of 0.046 (kerf angle), 0.0078 (kerf ratio), 0.044 (surface roughness), and 0.027 (drilling rate). Moth-Flame Optimization (MFO), Differential Evolution (DE), and Sine Cosine Algorithm (SCA) were used for multi-response optimization of AWJ deep hole drilling parameters. The optimal algorithm for each response was selected using Deng's similarity-based ranking. The ranking revealed SCA algorithm outperformed MFO and DE. The SCA algorithm discovered optimal parameter setting for AWJ-DHD as a water pressure of 350 MPa, standoff distance of 1.5 mm, and an abrasive mass flow rate of 300 g/min. Under these conditions, the predicted responses were a kerf angle of 0.048⁰, kerf ratio of 0.011, a surface roughness of 1.438 μm, and a drilling rate 0.769 mm/s. The validation trials using optimized parameters yielded a kerf angle of 0.047⁰, a kerf ratio of 0.066, a surface roughness of 1.40 μm, and a drilling rate of 0.769 mm/s, with percentage variations of 2.08%, 3.03%, 2.14%, and 2.65%, respectively, thereby demonstrating the efficiency of the developed machine learning model and optimization technique. The integrated machine learning and evolutionary algorithm framework improved drilling efficiency and hole quality by minimizing surface roughness.

Zobrazit více v PubMed

Songmene, V., Khettabi, R., Zaghbani, I., Kouam, J. & Djebara, A. Machining and machinability of aluminum alloys.

Bouzekova-Penkova, A. & Miteva, A.

Khalid, M. Y., Umer, R. & Khan, K. A. Review of recent trends and developments in aluminium 7075 alloy and its metal matrix composites (MMCs) for aircraft applications. DOI

Lakshmanan, M. et al. Machining studies of Al7075 in CNC turning using grey relational analysis. Materials Today: Proceedings,

Singh, J., Gill, S.S. and Mahajan, A., 2024. Experimental investigation and optimizing of turning parameters for machining of al7075-t6 aerospace alloy for reducing the tool wear and surface roughness. Journal of Materials Engineering and Performance, 33(17), pp.8745-8756.

Lokare, D. V. Experimental analysis of machining parameters in turning of aluminum 7075.

Sethupathy, A. & Shanmugasundaram, N. Prediction of cutting force based on machining parameters on AL7075-T6 aluminum alloy by response surface methodology in end milling. DOI

Akdulum, A. & Kayir, Y. Experimental investigation and optimization of process stability in drilling of al 7075-T651 using indexable insert drills. DOI

Sravanthi, C., Gajanana, S., Krishnaiah, A. & Venkateswarlu, C. Mechanical, microstructure and machining characteristics of alloying elements optimized al 7075 alloy modified with reinforcement-Silicon carbide.

Ajithkumar, J. P. & Xavior, M. A. Machinability studies on Al7075-based hybrid composites reinforced with SiC, graphene and CNT.

Tougas, B., Blais, C., Kakhki, A. M. & Christopherson, D. Effect of ultrasound-assisted machining on gun drilling of Pm steels.

Liu, S., Thangamani, G., Thangaraj, M. & Karmiris-Obratański, P. Recent trends on electro chemical machining process of metallic materials: a review. DOI

Bhargav, K. V. J., Pyla, K. R., Balaji, P. S. & Sahu, R. K. Micromachining of Al7075 alloy using an in-situ ultrasonicated µ-ECDM system. DOI

Ozcan, Y., Tunc, L. T., Kopacka, J., Cetin, B. & Sulitka, M. Modelling and simulation of controlled depth abrasive water jet machining (AWJM) for roughing passes of free-form surfaces. DOI

Gowthama, K., Somashekar, H. M., Suresha, B., Rajole, S. & Ravindran, N. Optimization of abrasive water jet machining process parameters of Al 7071 using design of experiments. Materials Today: Proceedings

Yuvaraj, N. & Kumar, M. P. Cutting of aluminium alloy with abrasive water jet and cryogenic assisted abrasive water jet: A comparative study of the surface integrity approach. DOI

Tosun, N., Dagtekin, I., Ozler, L. & Deniz, A. Abrasive waterjet cutting of aluminum alloys: workpiece surface roughness. DOI

Nyaboro, J., Ahmed, M., El-Hofy, H. & El-Hofy, M. Experimental and numerical investigation of the abrasive waterjet machining of aluminum-7075-T6 for aerospace applications. DOI

Karmiris-Obratański, P., Kudelski, R., Karkalos, N. E. & Markopoulos, A. P. Determination of the correlation between process parameters and Kerf characteristics in abrasive waterjet milling of high strength 7075-T6 aluminum alloy. DOI

Qian, Y. N. et al. The cylindrical surface characteristics of AA7075 aluminum alloy machined by abrasive waterjet with circular cuts. DOI

Der, O., Tasci, M., Basar, G. & Ercetin, A. Intelligent modeling and prediction of CO2 laser cutting performance in FFF-printed thermoplastics using machine learning algorithms. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089251366429 (2025).

Basar, G. & Der, O. Multi-objective optimization of process parameters for laser cutting polyethylene using fuzzy AHP-based MCDM methods. Proceedings of the Institution of Mechanical Engineers, Part E: Journal of Process Mechanical Engineering, 09544089251319202 (2025).

Basar, G., Der, O. & Guvenc, M. A. AI-powered hybrid metaheuristic optimization for predicting surface roughness and Kerf width in CO2 laser cutting of 3D-printed PLA-CF composites.

Xiang, X. et al. Enhancing beef tallow flavor through enzymatic hydrolysis: Unveiling key aroma precursors and volatile compounds using machine learning. Food Chemistry PubMed

Sha, X., Zhu, Y., Sha, X., Guan, Z. & Wang, S. ZHPO-LightXBoost an integrated prediction model based on small samples for pesticide residues in crops. Environmental Modelling & Software.

Liu, R. & Shen, W. Data Acquisition of Exercise and Fitness Pressure Measurement Based on Artificial Intelligence Technology. SLAS Technology 100328 (2025). PubMed

Sha, X., Si, X., Zhu, Y., Wang, S. & Zhao, Y.

Yu, Z., Ning, Z., Chang, W. Y., Chang, S. J. & Yang, H. Optimal harvest decisions for the management of carbon sequestration forests under price uncertainty and risk preferences. Forest Policy and Economics

Tian, A. et al.

Vasudevan, B. et al. Experimental study, modeling, and parametric optimization on abrasive waterjet drilling of YSZ-coated inconel 718 Superalloy. DOI

Chandar, J. B. et al. Process parameter optimization for minimizing overcut in abrasive waterjet deep hole drilling of SS 316L. Scientific Reports, PubMed PMC

Jayaprakash, B. C., Lenin, N. & Siva Kumar, M. Experimentation and optimization of deep hole drilling parameters for SS316L. DOI

Shanmugam, A., Krishnamurthy, K. & Mohanraj, T. Experimental study of surface roughness and taper angle in abrasive water jet machining of 7075 aluminum composite using response surface methodology. Surface Review and Letters,

Zhang, H. H., Yao, H. M. & Jiang, L. J. October. Novel time domain integral equation method hybridized with the macromodels of circuits. In 2015 IEEE 24th Electrical Performance of Electronic Packaging and Systems (EPEPS) (135–138). IEEE. (2015).

Wang, X., Su, H. & Liu, X. The impact of green technological innovation on industrial structural optimization under dual-carbon targets: The role of the moderating effect of carbon emission efficiency. Sustainability,

Ma, C. et al. High-efficiency topology optimization method for thermal-fluid problems in cooling jacket of high-speed motorized spindle. DOI

Tahmasbi, V., Rabiee, A. H. & Baraheni, M. Ultrasonic-Assisted Micro-Milling in cortical bone cutting: force and temperature prediction by machine learning models on experimental results.

Baraheni, M., Soudmand, B. H., Amini, S. & Fotouhi, M. Stacked generalization ensemble learning strategy for multivariate prediction of delamination and maximum thrust force in composite drilling. DOI

Baraheni, M. et al. Refined dimensional accuracy in FDM components via ensemble weight-optimized surrogates and hybrid NSGA-II-TOPSIS optimization.

Pittalà, G. M. & Linguanotto, S. A study of machinability of Al7075-T6 with solid carbide end mills. DOI

Patil, S. S., Patil, S., Kumar, S. S. & Saviraj, A. S. June. A review on influence of various technological processes on mechanical properties of aluminum alloys. In IOP Conference Series: Materials Science and Engineering

Zhou, B., Liu, B. & Zhang, S. The advancement of 7xxx series aluminum alloys for aircraft structures: A review. Metals,

Amri, R., Laamouri, A. & Fathallah, R. Multiobjective optimization of waterjet peening effects on high-cycle fatigue life of Al-7075-T6 alloy. Journal of the Brazilian Society of Mechanical Sciences and Engineering

Sasikumar, K. S. K., Arulshri, K. P., Ponappa, K. & Uthayakumar, M. A study on kerf characteristics of hybrid aluminium 7075 metal matrix composites machined using abrasive water jet machining technology. Proceedings of the Institution of Mechanical Engineers, Part B: Journal of Engineering Manufacture

Raja, M. A. et al. Parametric investigation and optimization of AWJM process on stir cast al7075/basalt composite materials using Taguchi based grey relational analysis. Materials Today: Proceedings

Lathif, S. A., Yeswanth, I. V. S. & Srinivasulu, M. An experimental study and parametric optimization of AWJC on aluminium 7075 alloy.

Ayyandurai, M., Mohan, B. & Anbuchezhiyan, G. Characterization and machining studies of nano borosilicate particles reinforced aluminium alloy composites using AWJM process. DOI

Kartal, F. & Kaptan, A. Artificial neural network and multiple regression analysis for predicting abrasive water jet cutting of al 7068 aerospace alloy.

Periyappillai, G., Subbarayan, S. & Sengottaiyan, S. Advanced ensemble machine learning prediction to enhance the accuracy of abrasive waterjet machining for biocomposites. Materials Chemistry and Physics

Nagarajan, L., Mahalingam, S. K. & Vasudevan, B. Abrasive waterjet drilling process enhancement using machine learning and evolutionary algorithms. DOI

Khan, R. et al. March.

Mirjalili, S. SCA: a sine cosine algorithm for solving optimization problems. DOI

Zamani, H., Nadimi-Shahraki, M. H., Mirjalili, S., Soleimanian Gharehchopogh, F. & Oliva, D. A critical review of moth-flame optimization algorithm and its variants: structural reviewing, performance evaluation, and statistical analysis. DOI

Bansal, J. C., Bajpai, P., Rawat, A. & Nagar, A. K.

Eltaeib, T. & Mahmood, A. Differential evolution: A survey and analysis. Applied Sciences,

Liu, W. et al.

Ni, Z. L. et al. Numerical analysis of ultrasonic spot welding of Cu/Cu joints.

Joel, C. & Jeyapoovan, T. Optimization of machinability parameters in abrasive water jet machining of AA7075 using Grey-Taguchi method. Materials Today: Proceedings

Parvandar Asadollahi, B., Pour Panah, M. & Javdani, A. Experimental investigation and molecular dynamics simulation of contributing variables on abrasive water jet on aluminum alloy 7075 reinforced with Al2O3, graphite and silicon carbide. DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...