Beyond FoxP3-Identification of a Chicken Regulatory T Cell Signature
Jazyk angličtina Země Německo Médium print
Typ dokumentu časopisecké články
PubMed
41416935
PubMed Central
PMC12716188
DOI
10.1002/eji.70106
Knihovny.cz E-zdroje
- Klíčová slova
- CTLA‐4, FoxP3, Treg signature, chicken, single‐cell RNA‐seq,
- MeSH
- antigen CTLA-4 metabolismus imunologie genetika MeSH
- forkhead transkripční faktory * metabolismus imunologie genetika MeSH
- glukokortikoidy indukovaný protein související s TNRF genetika metabolismus imunologie MeSH
- kur domácí * imunologie MeSH
- receptor interleukinu-2 - alfa-podjednotka metabolismus MeSH
- regulační T-lymfocyty * imunologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigen CTLA-4 MeSH
- forkhead transkripční faktory * MeSH
- glukokortikoidy indukovaný protein související s TNRF MeSH
- receptor interleukinu-2 - alfa-podjednotka MeSH
Regulatory T cells (Tregs), defined by the lineage-specific transcription factor FoxP3, are crucial for immune regulation and have been studied extensively in mammals. However, avian Tregs remain poorly characterized, leaving gaps in our understanding of their evolutionary conservation and unique features. In this study, we investigated the phenotype of chicken Tregs to define reliable markers for their identification and characterization. We analyzed CD4+ splenocytes sorted into CD25negative, CD25low, and CD25high subpopulations using RNA sequencing. FOXP3 and other Treg-associated genes were expressed in both CD25low and CD25high populations, showing that CD25 expression alone is insufficient to distinguish chicken Tregs. To refine the marker profile, we evaluated additional markers, including CTLA-4 and GITR. Notably, we describe for the first time a chicken-specific CTLA-4 antibody, which uniquely stains CTLA-4 exclusively in intracellular (ic) compartments, distinguishing it from mammalian counterparts. Single-cell RNA sequencing further confirmed distinct FOXP3+ clusters enriched for expression of CTLA4 and TNFRSF18 (encoding GITR). While CTLA-4's ic expression limits usability in functional assays, the combination of CD4+/CD25+/CTLA-4+/GITR+ represents the most accurate characterization of putative chicken Tregs to date. These findings highlight evolutionary conservation and species-specific differences in Treg markers, providing the foundation for future studies on chicken Treg functionality.
Bond Life Sciences Center University of Missouri Columbia Missouri USA
Department of Veterinary Medicine Institute of Virology Freie Universität Berlin Berlin Germany
Zobrazit více v PubMed
Sakaguchi S., Yamaguchi T., Nomura T., and Ono M., “Regulatory T Cells and Immune Tolerance,” Cell 133, no. 5 (2008): 775–787, 10.1016/j.cell.2008.05.009. PubMed DOI
Panduro M., Benoist C., and Mathis D., “Tissue Tregs,” Annual Review of Immunology 34 (2016): 609–633, 10.1146/annurev-immunol-032712-095948. PubMed DOI PMC
Sakaguchi S., Sakaguchi N., Asano M., Itoh M., and Toda M., “Immunologic Self‐Tolerance Maintained by Activated T Cells Expressing IL‐2 Receptor Alpha‐Chains (CD25). Breakdown of a Single Mechanism of Self‐Tolerance Causes Various Autoimmune Diseases,” Journal of Immunology 155, no. 3 (1995): 1151–1164, 10.4049/jimmunol.155.3.1151. PubMed DOI
Valencia X. and Lipsky P. E., “CD4+CD25+FoxP3+ regulatory T Cells in Autoimmune Diseases,” National Clinical Practice Rheumatology 3, no. 11 (2007): 619–626, 10.1038/ncprheum0624. PubMed DOI
Sahin E. and Sahin M., “Epigenetical Targeting of the FOXP3 Gene by S‐Adenosylmethionine Diminishes the Suppressive Capacity of Regulatory T Cells Ex Vivo and Alters the Expression Profiles,” Journal of Immunotherapy 42, no. 1 (2019): 11–22, 10.1097/cji.0000000000000247. PubMed DOI
Sojka D. K., Huang Y. H., and Fowell D. J., “Mechanisms of Regulatory T‐cell Suppression—a Diverse Arsenal for a Moving Target,” Immunology 124, no. 1 (2008): 13–22, 10.1111/j.1365-2567.2008.02813.x. PubMed DOI PMC
Le Bras S. and Geha R. S., “IPEX and the Role of Foxp3 in the Development and Function of Human Tregs,” Journal of Clinical Investigation 116, no. 6 (2006): 1473–1475, 10.1172/jci28880. PubMed DOI PMC
Kasheta M., Painter C. A., Moore F. E., et al., “Identification and Characterization of T Reg‐Like Cells in Zebrafish,” Journal of Experimental Medicine 214, no. 12 (2017): 3519–3530, 10.1084/jem.20162084. PubMed DOI PMC
Clemons R. A., Smith C. H., and Zamudio K. R., “Primary Regulatory T Cell Activator FOXP3 Is Present Across Amphibia,” Immunogenetics 77, no. 1 (2025): 15, 10.1007/s00251-025-01372-0. PubMed DOI
Kumar S. and Hedges S. B., “A Molecular Timescale for Vertebrate Evolution,” Nature 392, no. 6679 (1998): 917–920, 10.1038/31927. PubMed DOI
Kaspers B., Schat K. A., Göbel T., and Vervelde L., Avian Immunology, Academic Press; 2021.
Shanmugasundaram R. and Selvaraj R. K., “Regulatory T Cell Properties of Chicken CD4+CD25+ Cells,” Journal of Immunology 186, no. 4 (2011): 1997–2002, 10.4049/jimmunol.1002040. PubMed DOI
Shanmugasundaram R. and Selvaraj R. K., “Regulatory T Cell Properties of Thymic CD4+CD25+ Cells in Ducks,” Veterinary Immunology and Immunopathology 149, no. 1‐2 (2012): 20–27, 10.1016/j.vetimm.2012.05.019. PubMed DOI
Burkhardt N. B., Elleder D., Schusser B., et al., “The Discovery of Chicken Foxp3 Demands Redefinition of Avian Regulatory T Cells,” Journal of Immunology 208, no. 5 (2022): 1128–1138, 10.4049/jimmunol.2000301. PubMed DOI
Gurung A., Kamble N., Kaufer B. B., Pathan A., and Behboudi S., “Association of Marek's Disease Induced Immunosuppression With Activation of a Novel Regulatory T Cells in Chickens,” Plos Pathogens 13, no. 12 (2017): e1006745, 10.1371/journal.ppat.1006745. PubMed DOI PMC
Chung S. H., Ye X. Q., and Iwakura Y., “Interleukin‐17 family Members in Health and Disease,” International Immunology 33, no. 12 (2021): 723–729, 10.1093/intimm/dxab075. PubMed DOI PMC
Unutmaz D., “RORC2: The Master of human Th17 Cell Programming,” European Journal of Immunology 39, no. 6 (2009): 1452–1455, 10.1002/eji.200939540. PubMed DOI
Pesce B., Ribeiro C. H., Larrondo M., et al., “TNF‐alpha Affects Signature Cytokines of Th1 and Th17 T Cell Subsets Through Differential Actions on TNFR1 and TNFR2,” International Journal of Molecular Sciences 23, no. 16 (2022), 10.3390/ijms23169306. PubMed DOI PMC
The Immunological Toolbox . 2025, https://www.immunologicaltoolbox.co.uk/ Available from: Accessed: 10.03.2025.
Hench V. K. and Su L., “Regulation of IL‐2 Gene Expression by Siva and FOXP3 in human T Cells,” BMC Immunology [Electronic Resource] 12 (2011): 54, 10.1186/1471-2172-12-54. PubMed DOI PMC
Laine A., Labiad O., Hernandez‐Vargas H., et al., “Regulatory T Cells Promote Cancer Immune‐Escape Through Integrin alphavbeta8‐Mediated TGF‐Beta Activation,” Nature Communications 12, no. 1 (2021): 6228, 10.1038/s41467-021-26352-2. PubMed DOI PMC
Nazki S., Reddy V., Kamble N., et al., “CD4(+)TGFβ(+) Cells Infiltrated the Bursa of Fabricius Following IBDV Infection, and Correlated With a Delayed Viral Clearance, but Did Not Correlate With Disease Severity, or Immunosuppression,” Frontiers in immunology 14 (2023): 1197746, 10.3389/fimmu.2023.1197746. PubMed DOI PMC
Pacholczyk R., Ignatowicz H., Kraj P., and Ignatowicz L., “Origin and T Cell Receptor Diversity of Foxp3+CD4+CD25+ T Cells,” Immunity 25, no. 2 (2006): 249–259, 10.1016/j.immuni.2006.05.016. PubMed DOI
Fontenot J. D., Gavin M. A., and Rudensky A. Y., “Foxp3 programs the Development and Function of CD4+CD25+ Regulatory T Cells,” Nature Immunology 4, no. 4 (2003): 330–336, 10.1038/ni904. PubMed DOI
Gianchecchi E. and Fierabracci A., “Inhibitory Receptors and Pathways of Lymphocytes: The Role of PD‐1 in Treg Development and Their Involvement in Autoimmunity Onset and Cancer Progression,” Frontiers in immunology 9 (2018): 2374, 10.3389/fimmu.2018.02374. PubMed DOI PMC
Lim S. P., Costantini B., Mian S. A., et al., “Treg Sensitivity to FasL and Relative IL‐2 Deprivation Drive Idiopathic Aplastic Anemia Immune Dysfunction,” Blood 136, no. 7 (2020): 885–897, 10.1182/blood.2019001347. PubMed DOI PMC
Ding Y., Vujanac M., Nivelo L., Villarino A., and Malek T. R., “Blimp1 regulates the Growth and Function of human Regulatory T Cells,” Journal of Immunology 208, no. 1 (2022): 56.04–56.04, 10.4049/jimmunol.208.Supp.56.04. DOI
Cretney E., Leung P. S., Trezise S., et al., “Characterization of Blimp‐1 Function in Effector Regulatory T Cells,” Journal of Autoimmunity 91 (2018): 73–82, 10.1016/j.jaut.2018.04.003. PubMed DOI
Cretney E., Xin A., Shi W., et al., “The Transcription Factors Blimp‐1 and IRF4 Jointly Control the Differentiation and Function of Effector Regulatory T Cells,” Nature Immunology 12, no. 4 (2011): 304–311, 10.1038/ni.2006. PubMed DOI
Ronchetti S., Ricci E., Petrillo M. G., et al., “Glucocorticoid‐Induced Tumour Necrosis Factor Receptor‐Related Protein: A Key Marker of Functional Regulatory T Cells,” Journal of Immunology Research 2015 (2015): 171520, 10.1155/2015/171520. PubMed DOI PMC
Lam A. J., MacDonald K. N., Pesenacker A. M., et al., “Innate Control of Tissue‐Reparative Human Regulatory T Cells,” Journal of Immunology 202, no. 8 (2019): 2195–2209, 10.4049/jimmunol.1801330. PubMed DOI
Akimova T., Beier U. H., Wang L., Levine M. H., and Hancock W. W., “Helios Expression Is a Marker of T Cell Activation and Proliferation,” PLoS ONE 6, no. 8 (2011): e24226, 10.1371/journal.pone.0024226. PubMed DOI PMC
Kaser T., Mair K. H., Hammer S. E., Gerner W., and Saalmuller A., “Natural and Inducible Tregs in Swine: Helios Expression and Functional Properties,” Developmental and Comparative Immunology 49, no. 2 (2015): 323–331, 10.1016/j.dci.2014.12.005. PubMed DOI
Yoshimura A., Wakabayashi Y., and Mori T., “Cellular and Molecular Basis for the Regulation of Inflammation by TGF‐Beta,” Journal of Biochemistry 147, no. 6 (2010): 781–792, 10.1093/jb/mvq043. PubMed DOI PMC
Yamazaki T., Yang X. O., Chung Y., et al., “CCR6 regulates the Migration of Inflammatory and Regulatory T Cells,” Journal of Immunology 181, no. 12 (2008): 8391–8401, 10.4049/jimmunol.181.12.8391. PubMed DOI PMC
Palomares O., Martin‐Fontecha M., Lauener R., et al., “Regulatory T Cells and Immune Regulation of Allergic Diseases: Roles of IL‐10 and TGF‐beta,” Genes and Immunity 15, no. 8 (2014): 511–5120, 10.1038/gene.2014.45. PubMed DOI
Liu W., Putnam A. L., Xu‐Yu Z., et al., “CD127 expression Inversely Correlates With FoxP3 and Suppressive Function of human CD4+ T Reg Cells,” Journal of Experimental Medicine 203, no. 7 (2006): 1701–1711, 10.1084/jem.20060772. PubMed DOI PMC
Brzostek J., Gascoigne N. R., and Rybakin V., “Cell Type‐Specific Regulation of Immunological Synapse Dynamics by B7 Ligand Recognition,” Frontiers in Immunology 7 (2016): 24, 10.3389/fimmu.2016.00024. PubMed DOI PMC
Zhao H., Liao X., and Kang Y., “Tregs: Where We Are and What Comes Next?,” Frontiers in Immunology 8 (2017): 1578, 10.3389/fimmu.2017.01578. PubMed DOI PMC
Tai X., Van Laethem F., Pobezinsky L., et al., “Basis of CTLA‐4 Function in Regulatory and Conventional CD4(+) T Cells,” Blood 119, no. 22 (2012): 5155–5163, 10.1182/blood-2011-11-388918. PubMed DOI PMC
Puehler F., Gobel T., Breyer U., Ohnemus A., Staeheli P., and Kaspers B., “A Sensitive Bioassay for Chicken Interleukin‐18 Based on the Inducible Release of Preformed Interferon‐Gamma,” Journal of Immunological Methods 274, no. 1‐2 (2003): 229–232, 10.1016/s0022-1759(02)00515-x. PubMed DOI
Andrews S., FastQC: A Quality Control Tool for High Throughput Sequence Data. Available online at:. 2010, https://www.bioinformatics.babraham.ac.uk/projects/fastqc/.
Ewels P., Magnusson M., Lundin S., and Käller M., “MultiQC: Summarize Analysis Results for Multiple Tools and Samples in a Single Report,” Bioinformatics 32, no. 19 (2016): 3047–3048, 10.1093/bioinformatics/btw354. PubMed DOI PMC
Patro R., Duggal G., Love M. I., Irizarry R. A., and Kingsford C., “Salmon Provides Fast and Bias‐Aware Quantification of Transcript Expression,” Nature Methods 14, no. 4 (2017): 417–419, 10.1038/nmeth.4197. PubMed DOI PMC
Smith J., Alfieri J. M., Anthony N., et al., “Fourth Report on Chicken Genes and Chromosomes 2022,” Cytogenetic and Genome Research 162, no. 8‐9 (2022): 405–528, 10.1159/000529376. PubMed DOI PMC
Love M. I., Huber W., and Anders S., “Moderated Estimation of Fold Change and Dispersion for RNA‐seq Data With DESeq2,” Genome Biology 15, no. 12 (2014): 550, 10.1186/s13059-014-0550-8. PubMed DOI PMC
Mistry M., Piper M., Liu J., and Khetani R., bctraining/DGE_workshop_salmon_online: Differential Gene Expression Workshop Lessons from HCBC (first release). 2021, May 24. Available from: Zenodo, 10.5281/zenodo.4783481. DOI
Zheng G. X., Terry J. M., Belgrader P., et al., “Massively Parallel Digital Transcriptional Profiling of Single Cells,” Nature Communications 8 (2017): 14049, 10.1038/ncomms14049. PubMed DOI PMC
Fleming S. J., Chaffin M. D., Arduini A., et al., “Unsupervised Removal of Systematic Background Noise From Droplet‐Based Single‐Cell Experiments Using CellBender,” Nature Methods 20, no. 9 (2023): 1323–1335, 10.1038/s41592-023-01943-7. PubMed DOI
Wolf F. A., Angerer P., and Theis F. J., “SCANPY: Large‐Scale Single‐Cell Gene Expression Data Analysis,” Genome biology 19, no. 1 (2018): 15, 10.1186/s13059-017-1382-0. PubMed DOI PMC
Korsunsky I., Millard N., Fan J., et al., “Fast, Sensitive and Accurate Integration of Single‐Cell Data With Harmony,” Nature Methods 16, no. 12 (2019): 1289–1296, 10.1038/s41592-019-0619-0. PubMed DOI PMC
Viertlboeck B. C., Schweinsberg S., Hanczaruk M. A., et al., “The Chicken Leukocyte Receptor Complex Encodes a Primordial, Activating, High‐Affinity IgY Fc Receptor,” PNAS 104, no. 28 (2007): 11718–11723, 10.1073/pnas.0702011104. PubMed DOI PMC