Role of exopolysaccharide secreted by Chlorella vulgaris SSAU 8 and Desertifilum salkalinema SSAU 7 in fertility enhancement of saline soil
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41452449
DOI
10.1007/s12223-025-01406-w
PII: 10.1007/s12223-025-01406-w
Knihovny.cz E-zdroje
- Klíčová slova
- Biological soil crusts, Cyanobacteria, Exopolysaccharide, Salinity, Soil fertility,
- Publikační typ
- časopisecké články MeSH
Soil salinization has emerged as a major constraint to global agricultural productivity, severely disrupting soil structure, nutrient cycling, and plant establishment. This study evaluates the functional potential of the cyanobacterium Desertifilum salkalinema SSAU-7 and the microalga Chlorella vulgaris SSAU-8 as bio-ameliorants for saline soils. Both isolates demonstrated high salinity tolerance and exhibited key plant growth-promoting traits, including indole-3-acetic acid (IAA) and hydrogen cyanide (HCN) production. Under escalating salt concentrations, D. salkalinema SSAU-7 and the mixed consortium maintained stable photosynthetic activity and enhanced extracellular polymeric substance (EPS) secretion, while C. vulgaris SSAU-8 showed reduced photo-physiological performance at 10 g L⁻¹ salinity. Soil microcosm experiments revealed that microbial inoculation facilitated the development of biological soil crusts (BSCs), which significantly improved soil physicochemical properties over 75 days. Notably, treated soils exhibited reduced pH (7.5-8.0), a 209% increase in total organic carbon, a 10% enhancement in porosity, and an 8% reduction in bulk density. EPS emerged as a critical driver of soil aggregation and fertility restoration by integrating essential structural components within the saline matrix. The BSC-amended soils further promoted Oryza sativa germination and early seedling vigor, underscoring the agricultural relevance of these microbial consortia. Collectively, our findings establish cyanobacteria-microalgae co-cultures as a promising eco-engineering strategy for reclaiming saline landscapes and strengthening soil resilience under salt stress.
Zobrazit více v PubMed
Abinandan S, Subashchandrabose SR, Venkateswarlu K, Megharaj M (2019) Soil microalgae and cyanobacteria: the biotechnological potential in the maintenance of soil fertility and health. Crit Rev Biotechnol 39(8):981–998. https://doi.org/10.1080/07388551.2019.1654972 PubMed DOI
Ahmad F, Ahmad I, Khan MS (2008) Screening of free-living rhizospheric bacteria for their multiple plant growth promoting activities. Microbiol Res 163(2):173–181. https://doi.org/10.1016/j.micres.2006.04.001 PubMed DOI
Azeredo J, Oliveira R (2000) The role of exopolymers in the attachment of sphingomonas paucimobilis. Biofouling 16(1):59–67. https://doi.org/10.1080/08927010009378430 DOI
Bataeva YV, Grigoryan LN (2024) Ecological features and adaptive capabilities of cyanobacteria in desert ecosystems: a review. Eurasian Soil Sci 57(3):430–445. https://doi.org/10.1134/S1064229323603001 DOI
Bhagat N, Raghav M, Dubey S, Bedi N (2021) Bacterial exopolysaccharides: insight into their role in plant abiotic stress tolerance. J Microbiol Biotechnol 31(8):1045–1059. https://doi.org/10.4014/jmb.2105.05009 PubMed DOI PMC
CAI F-F, CHEN Y-X, ZHU M-L, LI X-C, LI R-H (2017) Desertifilum salkalinema sp. nov. (Oscillatoriales, Cyanobacteria) from an alkaline pool in China. Phytotaxa 292(3):262. https://doi.org/10.11646/phytotaxa.292.3.6 DOI
Castle SC, Morrison CD, Barger NN (2011) Extraction of chlorophyll a from biological soil crusts: a comparison of solvents for spectrophotometric determination. Soil Biol Biochem 43(4):853–856. https://doi.org/10.1016/j.soilbio.2010.11.025 DOI
Colica G, Li H, Rossi F, Li D, Liu Y, De Philippis R (2014) Microbial secreted exopolysaccharides affect the hydrological behavior of induced biological soil crusts in desert sandy soils. Soil Biol Biochem 68:62–70. https://doi.org/10.1016/j.soilbio.2013.09.017 DOI
Costa OYA, Raaijmakers JM, Kuramae EE (2018) Microbial extracellular polymeric substances: ecological function and impact on soil aggregation. Front Microbiol. https://doi.org/10.3389/fmicb.2018.01636 PubMed DOI PMC
Eynard A, Lal R, Wiebe K (2005) Crop response in Salt-Affected soils. J Sustainable Agric 27(1):5–50. https://doi.org/10.1300/J064v27n01_03 DOI
Gao S, Huan L, Lu XP, Jin WH, Wang XL, Wu MJ, Wang GC (2016) Photosynthetic responses of the low intertidal macroalga sargassum fusiforme (Sargassaceae) to saline stress. Photosynthetica 54(3):430–437. https://doi.org/10.1007/s11099-015-0181-7 DOI
Gheda SF, Ahmed DA (2015) Improved soil characteristics and wheat germination as influenced by inoculation of Nostoc Kihlmani and Anabaena cylindrica. Rend Lincei 26(2):121–131. https://doi.org/10.1007/s12210-014-0351-8 DOI
Guidi L, Lo Piccolo E, Landi M (2019) Chlorophyll fluorescence, photoinhibition and abiotic stress: does it make any difference the fact to be a C3 or C4 species? Front Plant Sci. https://doi.org/10.3389/fpls.2019.00174 PubMed DOI PMC
Hussein KA, Joo JH (2015) Isolation and characterization of rhizomicrobial isolates for phosphate solubilization and Indole acetic acid production. J Korean Soc Appl Biol Chem 58(6):847–855. https://doi.org/10.1007/s13765-015-0114-y DOI
JOSE S, RENUKA N, KUMARI RATHASK, BUX F (2024) Microalgal bioinoculants for sustainable agriculture and their interactions with soil biotic and abiotic components: a review. Pedosphere 34(2):297–314. https://doi.org/10.1016/j.pedsph.2023.12.002 DOI
Kharwar S, Bhattacharjee S, Mishra AK (2022) Deciphering salinity tolerance in the Cyanobacterium Anabaena sphaerica: an evaluation of physiological and biochemical adjustments. Acta Physiol Plant 44(12):127. https://doi.org/10.1007/s11738-022-03465-9 DOI
Kirsch F, Klähn S, Hagemann M (2019) Salt-regulated accumulation of the compatible solutes sucrose and glucosylglycerol in cyanobacteria and its biotechnological potential. Front Microbiol. https://doi.org/10.3389/fmicb.2019.02139 PubMed DOI PMC
Liu L, Pohnert G, Wei D (2016) Extracellular metabolites from industrial microalgae and their biotechnological potential. Mar Drugs 14(10):191. https://doi.org/10.3390/md14100191 PubMed DOI PMC
Maier S, Tamm A, Wu D, Caesar J, Grube M, Weber B (2018) Photoautotrophic organisms control microbial abundance, diversity, and physiology in different types of biological soil crusts. ISME J 12(4):1032–1046. https://doi.org/10.1038/s41396-018-0062-8 PubMed DOI PMC
Malam Issa O, Défarge C, Le Bissonnais Y, Marin B, Duval O, Bruand A, D’Acqui LP, Nordenberg S, Annerman M (2007) Effects of the inoculation of cyanobacteria on the microstructure and the structural stability of a tropical soil. Plant Soil 290(1–2):209–219. https://doi.org/10.1007/s11104-006-9153-9 DOI
Mao Q, Xie X, Pinzon-Nuñez DA, Xie Z, Liu T, Irshad S (2023) Native microalgae and Bacillus XZM remediate arsenic-contaminated soil by forming biological soil crusts. J Environ Manage 345:118858. https://doi.org/10.1016/j.jenvman.2023.118858 PubMed DOI
Maqubela MP, Mnkeni PNS, Issa OM, Pardo MT, D’Acqui LP (2009) Nostoc cyanobacterial inoculation in South African agricultural soils enhances soil structure, fertility, and maize growth. Plant Soil 315(1–2):79–92. https://doi.org/10.1007/s11104-008-9734-x DOI
Masojídek J, Gómez-Serrano C, Ranglová K, Cicchi B, Encinas Bogeat Á, Câmara Manoel JA, Sanches Zurano A, Silva Benavides AM, Barceló-Villalobos M, Robles Carnero VA, Ördög V, Gómez Pinchetti JL, Vörös L, Arbib Z, Rogalla F, Torzillo G, Lopez Figueroa F, Acién-Fernándéz FG (2022) Photosynthesis monitoring in microalgae cultures grown on municipal wastewater as a nutrient source in large-scale outdoor bioreactors. Biology 11(10):1380. https://doi.org/10.3390/biology11101380 PubMed DOI PMC
Maurya N, Sharma A, Sundaram S (2024) The role of PGPB-microalgae interaction in alleviating salt stress in plants. Curr Microbiol 81(9):270. https://doi.org/10.1007/s00284-024-03805-7 PubMed DOI
Maurya N, Sharma A, Sundaram S (2025) Enhancement of soil fertility utilizing cyanobacteria-bacteria consortia. J Appl Phycol. https://doi.org/10.1007/s10811-024-03437-1 DOI
Morcillo R, Manzanera M (2021) The effects of plant-associated bacterial exopolysaccharides on plant abiotic stress tolerance. Metabolites 11(6):337. https://doi.org/10.3390/metabo11060337 PubMed DOI PMC
Nassef K, Sahli A, Bouhdid S, Mezzoug N, Abrini J, Khay EO (2025) Phosphate solubilizing microorganisms and their use in sustainable agriculture: a review. Geomicrobiol J 42(3):224–243. https://doi.org/10.1080/01490451.2025.2457660 DOI
Naveed S, Li C, Lu X, Chen S, Yin B, Zhang C, Ge Y (2019) Microalgal extracellular polymeric substances and their interactions with metal(loid)s: a review. Crit Rev Environ Sci Technol 49(19):1769–1802. https://doi.org/10.1080/10643389.2019.1583052 DOI
Omar MM, Massawe BHJ, Shitindi MJ, Pedersen O, Meliyo JL, Fue KG (2024) Assessment of salt-affected soil in selected rice irrigation schemes in Tanzania: understanding salt types for optimizing management approaches. Front Soil Sci. https://doi.org/10.3389/fsoil.2024.1372838 DOI
Osman MEH, El-Sheekh MM, El-Naggar AH, Gheda SF (2010) Effect of two species of cyanobacteria as biofertilizers on some metabolic activities, growth, and yield of pea plant. Biol Fertil Soils 46(8):861–875. https://doi.org/10.1007/s00374-010-0491-7 DOI
Prasanna R, Rana A, Chaudhary V, Joshi M, Nain L (2012) Cyanobacteria-PGPR Interactions for Effective Nutrient and Pest Management Strategies in Agriculture. Microorganisms in Sustainable Agriculture and Biotechnology. Springer Netherlands, pp 173–195. https://doi.org/10.1007/978-94-007-2214-9_10 DOI
Román JR, Roncero-Ramos B, Chamizo S, Rodríguez‐Caballero E, Cantón Y (2018) Restoring soil functions by means of cyanobacteria inoculation: importance of soil conditions and species selection. Land Degrad Dev 29(9):3184–3193. https://doi.org/10.1002/ldr.3064 DOI
Roque J, Brito Â, Rocha M, Pissarra J, Nunes T, Bessa M, Vieira J, Vieira CP, Melo P, Tamagnini P (2023) Isolation and characterization of soil cyanobacteria and microalgae and evaluation of their potential as plant biostimulants. Plant Soil 493(1–2):115–136. https://doi.org/10.1007/s11104-023-06217-x DOI
Roselet F, Vandamme D, Roselet M, Muylaert K, Abreu PC (2017) Effects of pH, salinity, biomass concentration, and algal organic matter on flocculant efficiency of synthetic versus natural polymers for harvesting microalgae biomass. Bioenergy Res 10(2):427–437. https://doi.org/10.1007/s12155-016-9806-3 DOI
Salama Y, Chennaoui M, Sylla A, Mountadar M, Rihani M, Assobhei O (2016) Characterization, structure, and function of extracellular polymeric substances (EPS) of microbial biofilm in biological wastewater treatment systems: a review. Desalin Water Treat 57(35):16220–16237. https://doi.org/10.1080/19443994.2015.1077739 DOI
Sharma A, Maurya N, Singh SK, Sundaram S (2024a) Investigation on synergetic strategy for the rejuvenation of Cr (VI) contaminated soil using biochar-immobilized bacteria and cyanobacteria consortia. J Environ Chem Eng 12(2):112034. https://doi.org/10.1016/j.jece.2024.112034 DOI
Sharma A, Maurya N, Sundaram S (2024b) Investigation of the toxicity of cr (VI) against cyanobacteria and the mechanism of tolerance of the cyanobacterial consortia: a quantum mechanical approach. Environ Sci Pollut Res 31(38):50478–50492. https://doi.org/10.1007/s11356-024-34589-9 DOI
Sharma A, Singh SK, Maurya N, Tripathi SM, Jaiswal S, Agrawal M, Sundaram S (2024c) Restoration of the soil fertility under Cr(VI) and artificial drought condition by the utilization of plant growth–promoting Bacillus spp. SSAU2. Int Microbiol 28(1):81–93. https://doi.org/10.1007/s10123-024-00528-4 PubMed DOI
Sharma A, Singh SK, Sundaram S (2024d) Efficient biosequestration of Cr (VI) by Bacillus spp. SSAU-2: optimization, mathematical modelling, and plant growth promotion. Biochem Eng J 204:109186. https://doi.org/10.1016/j.bej.2023.109186 DOI
Sible CN, Seebauer JR, Below FE (2021) Plant biostimulants: a categorical review, their implications for row crop production, and relation to soil health indicators. Agronomy 11(7):1297. https://doi.org/10.3390/agronomy11071297 DOI
Singh A (2022) Soil salinity: a global threat to sustainable development. Soil Use Manag 38(1):39–67. https://doi.org/10.1111/sum.12772 DOI
Vidya D, Kadri MS, Mallikarjun Honnad A, Karicheri N, Muthiyal Prabakaran S, Kulanthaiyesu A (2025) Bioenergy products sequestration proportions among three mixotrophically cultivated microalgae by remediating two organic waste resources. Int J Phytoremediation 27(4):422–436. https://doi.org/10.1080/15226514.2024.2424309 PubMed DOI
Wang Z, Pan J, Lu Z, Xia L, Song S, Hu Y, Li Y (2025) Microcoleus vaginatus: a novel amendment for constructing artificial soil from tailings. Environ Technol Innov 37:103939. https://doi.org/10.1016/j.eti.2024.103939 DOI
Wu L, Zhang C, Vadiveloo A, Montes ML, Xia L, Song S, Fernandez MA, Lan S (2024) Efficient nutrient recycling from wastewater to deserts: a comparative study on biocrust cyanobacteria performance. Chem Eng J 491:151927. https://doi.org/10.1016/j.cej.2024.151927 DOI
Zhang Z, Wang L, Wu Y, Li C, Fu P, Liu J (2023) Isolation and identification of green alga Chlorella vulgaris HNUFU001 for environmental selenium enrichment in heterotrophic growth regime. Algal Res 75:103299. https://doi.org/10.1016/j.algal.2023.103299 DOI
Zhang C, Yu X, Laipan M, Wei T, Guo J (2024) Soil health improvement by inoculation of indigenous microalgae in saline soil. Environ Geochem Health 46(1):23. https://doi.org/10.1007/s10653-023-01790-7 PubMed DOI