Ion dynamics underlying the seizure delay effect of low-frequency electrical stimulation

. 2025 Dec ; 21 (12) : e1013838. [epub] 20251229

Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41460946

The biological mechanisms underlying the spontaneous and recurrent transition to seizures in the epileptic brain are still poorly understood. As a result, seizures remain uncontrolled in a substantial proportion of patients. Brain stimulation is an emerging and promising method to treat various brain disorders, including drug-refractory epilepsy. Selected stimulation protocols previously demonstrated therapeutic efficacy in reducing the seizure rate. The stimulation efficacy critically depends on chosen stimulation parameters, such as the time point, amplitude, and frequency of stimulation. This study aims to explore the neurobiological impact of 1Hz stimulation and provide the mechanistic explanation behind its seizure-delaying effects. We study this effect using a computational model, a modified version of the Epileptor-2 model, in close comparison with such stimulation effects on spontaneous seizures recorded in vitro in a high-potassium model of ictogenesis in rat hippocampal slices. In particular, we investigate the mechanisms and dynamics of spontaneous seizure emergence, the seizure-delaying effect of the stimulation, and the optimal stimulation parameters to achieve the maximal anti-seizure effect. We show that the modified Epileptor-2 model replicates key experimental observations, and captures seizure dynamics and the anti-seizure effects of low-frequency electrical stimulation (LFES) observed in hippocampal slices. We identify the critical thresholds in the model for seizure onset and determine the optimal stimulation parameters-timing, amplitude, and duration-that exceed specific thresholds to delay seizures without triggering premature seizures. Our study highlights the central role of sodium-potassium pump dynamics in terminating seizures and mediating the LFES effect.

Zobrazit více v PubMed

Fiest KM, Sauro KM, Wiebe S, Patten SB, Kwon C-S, Dykeman J, et al. Prevalence and incidence of epilepsy: a systematic review and meta-analysis of international studies. Neurology. 2017;88(3):296–303. doi: 10.1212/WNL.0000000000003509 PubMed DOI PMC

Beghi E. The epidemiology of epilepsy. Neuroepidemiology. 2020;54(2):185–91. doi: 10.1159/000503831 PubMed DOI

Bialer M, White HS. Key factors in the discovery and development of new antiepileptic drugs. Nat Rev Drug Discov. 2010;9(1):68–82. doi: 10.1038/nrd2997 PubMed DOI

Rosenow F, Lüders H. Presurgical evaluation of epilepsy. Brain. 2001;124(Pt 9):1683–700. doi: 10.1093/brain/124.9.1683 PubMed DOI

Billakota S, Devinsky O, Kim K-W. Why we urgently need improved epilepsy therapies for adult patients. Neuropharmacology. 2020;170:107855. doi: 10.1016/j.neuropharm.2019.107855 PubMed DOI

Englot DJ, Rolston JD, Wright CW, Hassnain KH, Chang EF. Rates and predictors of seizure freedom with vagus nerve stimulation for intractable epilepsy. Neurosurgery. 2016;79(3):345–53. doi: 10.1227/neu.0000000000001165 PubMed DOI PMC

Fisher R, Salanova V, Witt T, Worth R, Henry T, Gross R, et al. Electrical stimulation of the anterior nucleus of thalamus for treatment of refractory epilepsy. Epilepsia. 2010;51(5):899–908. doi: 10.1111/j.1528-1167.2010.02536.x PubMed DOI

Bergey GK, Morrell MJ, Mizrahi EM, Goldman A, King-Stephens D, Nair D, et al. Long-term treatment with responsive brain stimulation in adults with refractory partial seizures. Neurology. 2015;84(8):810–7. doi: 10.1212/WNL.0000000000001280 PubMed DOI PMC

Sun W, Mao W, Meng X, Wang D, Qiao L, Tao W, et al. Low-frequency repetitive transcranial magnetic stimulation for the treatment of refractory partial epilepsy: a controlled clinical study. Epilepsia. 2012;53(10):1782–9. doi: 10.1111/j.1528-1167.2012.03626.x PubMed DOI

Lin Y, Wang Y. Neurostimulation as a promising epilepsy therapy. Epilepsia Open. 2017;2(4):371–87. doi: 10.1002/epi4.12070 PubMed DOI PMC

Fisher RS, Velasco AL. Electrical brain stimulation for epilepsy. Nat Rev Neurol. 2014;10(5):261–70. doi: 10.1038/nrneurol.2014.59 PubMed DOI

Mohan UR, Watrous AJ, Miller JF, Lega BC, Sperling MR, Worrell GA, et al. The effects of direct brain stimulation in humans depend on frequency, amplitude, and white-matter proximity. Brain Stimul. 2020;13(5):1183–95. doi: 10.1016/j.brs.2020.05.009 PubMed DOI PMC

Wang Y, Hutchings F, Kaiser M. Computational modeling of neurostimulation in brain diseases. Prog Brain Res. 2015;222:191–228. doi: 10.1016/bs.pbr.2015.06.012 PubMed DOI

Dallmer-Zerbe I, Jiruska P, Hlinka J. Personalized dynamic network models of the human brain as a future tool for planning and optimizing epilepsy therapy. Epilepsia. 2023;64(9):2221–38. doi: 10.1111/epi.17690 PubMed DOI

Jirsa VK, Proix T, Perdikis D, Woodman MM, Wang H, Gonzalez-Martinez J, et al. The virtual epileptic patient: individualized whole-brain models of epilepsy spread. Neuroimage. 2017;145(Pt B):377–88. doi: 10.1016/j.neuroimage.2016.04.049 PubMed DOI

Kile KB, Tian N, Durand DM. Low frequency stimulation decreases seizure activity in a mutation model of epilepsy. Epilepsia. 2010;51(9):1745–53. doi: 10.1111/j.1528-1167.2010.02679.x PubMed DOI PMC

Smirnova EY, Chizhov AV, Zaitsev AV. Presynaptic GABAB receptors underlie the antiepileptic effect of low-frequency electrical stimulation in the 4-aminopyridine model of epilepsy in brain slices of young rats. Brain Stimul. 2020;13(5):1387–95. doi: 10.1016/j.brs.2020.07.013 PubMed DOI

Koubeissi MZ, Kahriman E, Syed TU, Miller J, Durand DM. Low-frequency electrical stimulation of a fiber tract in temporal lobe epilepsy. Ann Neurol. 2013;74(2):223–31. doi: 10.1002/ana.23915 PubMed DOI

Yamamoto J, Ikeda A, Satow T, Takeshita K, Takayama M, Matsuhashi M, et al. Low-frequency electric cortical stimulation has an inhibitory effect on epileptic focus in mesial temporal lobe epilepsy. Epilepsia. 2002;43(5):491–5. doi: 10.1046/j.1528-1157.2002.29001.x PubMed DOI

Boëx C, Vulliémoz S, Spinelli L, Pollo C, Seeck M. High and low frequency electrical stimulation in non-lesional temporal lobe epilepsy. Seizure. 2007;16(8):664–9. doi: 10.1016/j.seizure.2007.05.009 PubMed DOI

Schrader LM, Stern JM, Wilson CL, Fields TA, Salamon N, Nuwer MR, et al. Low frequency electrical stimulation through subdural electrodes in a case of refractory status epilepticus. Clin Neurophysiol. 2006;117(4):781–8. doi: 10.1016/j.clinph.2005.12.010 PubMed DOI

Li MCH, Cook MJ. Deep brain stimulation for drug-resistant epilepsy. Epilepsia. 2018;59(2):273–90. doi: 10.1111/epi.13964 PubMed DOI

Sivaraju A, Quraishi I, Collins E, McGrath H, Ramos A, Turk-Browne NB, et al. Systematic 1 Hz direct electrical stimulation for seizure induction: a reliable method for localizing seizure onset zone and predicting seizure freedom. Brain Stimulation. 2024;17(2):339–45. doi: 10.1016/j.brs.2024.03.011 PubMed DOI

Trébuchon A, Chauvel P. Electrical stimulation for seizure induction and functional mapping in stereoelectroencephalography. J Clin Neurophysiol. 2016;33(6):511–21. doi: 10.1097/WNP.0000000000000313 PubMed DOI

Chang W-C, Kudlacek J, Hlinka J, Chvojka J, Hadrava M, Kumpost V, et al. Loss of neuronal network resilience precedes seizures and determines the ictogenic nature of interictal synaptic perturbations. Nat Neurosci. 2018;21(12):1742–52. doi: 10.1038/s41593-018-0278-y PubMed DOI PMC

Pérez-Cervera A, Hlinka J. Perturbations both trigger and delay seizures due to generic properties of slow-fast relaxation oscillators. PLoS Comput Biol. 2021;17(3):e1008521. doi: 10.1371/journal.pcbi.1008521 PubMed DOI PMC

Sohanian Haghighi H, Markazi AHD. Control of epileptic seizures by electrical stimulation: a model-based study. Biomed Phys Eng Express. 2021;7(6):10.1088/2057-1976/ac240d. doi: 10.1088/2057-1976/ac240d PubMed DOI

Acharya G, Davis KA, Nozari E. Predictive modeling of evoked intracranial EEG response to medial temporal lobe stimulation in patients with epilepsy. Commun Biol. 2024;7(1):1210. doi: 10.1038/s42003-024-06859-2 PubMed DOI PMC

Ashourvan A, Pequito S, Khambhati AN, Mikhail F, Baldassano SN, Davis KA, et al. Model-based design for seizure control by stimulation. J Neural Eng. 2020;17(2):026009. doi: 10.1088/1741-2552/ab7a4e PubMed DOI PMC

Mina F, Benquet P, Pasnicu A, Biraben A, Wendling F. Modulation of epileptic activity by deep brain stimulation: a model-based study of frequency-dependent effects. Front Comput Neurosci. 2013;7:94. doi: 10.3389/fncom.2013.00094 PubMed DOI PMC

Chizhov AV, Zefirov AV, Amakhin DV, Smirnova EY, Zaitsev AV. Minimal model of interictal and ictal discharges “Epileptor-2”. PLoS Comput Biol. 2018;14(5):e1006186. doi: 10.1371/journal.pcbi.1006186 PubMed DOI PMC

Isaacson JS, Scanziani M. How inhibition shapes cortical activity. Neuron. 2011;72(2):231–43. doi: 10.1016/j.neuron.2011.09.027 PubMed DOI PMC

Börgers C, Krupa M, Gielen S. The response of a classical Hodgkin-Huxley neuron to an inhibitory input pulse. J Comput Neurosci. 2010;28(3):509–26. doi: 10.1007/s10827-010-0233-8 PubMed DOI PMC

Cressman JR Jr, Ullah G, Ziburkus J, Schiff SJ, Barreto E. The influence of sodium and potassium dynamics on excitability, seizures, and the stability of persistent states: I. Single neuron dynamics. J Comput Neurosci. 2009;26(2):159–70. doi: 10.1007/s10827-008-0132-4 PubMed DOI PMC

Vida I, Bartos M, Jonas P. Shunting inhibition improves robustness of gamma oscillations in hippocampal interneuron networks by homogenizing firing rates. Neuron. 2006;49(1):107–17. doi: 10.1016/j.neuron.2005.11.036 PubMed DOI

Tikidji-Hamburyan RA, Canavier CC. (2020). Shunting inhibition improves synchronization in heterogeneous inhibitory interneuronal networks with type 1 excitability whereas hyperpolarizing inhibition is better for type 2 excitability. eneuro. 7(3). PubMed PMC

Bikson M, Hahn PJ, Fox JE, Jefferys JGR. Depolarization block of neurons during maintenance of electrographic seizures. J Neurophysiol. 2003;90(4):2402–8. doi: 10.1152/jn.00467.2003 PubMed DOI

Buzsáki G. Large-scale recording of neuronal ensembles. Nat Neurosci. 2004;7(5):446–51. doi: 10.1038/nn1233 PubMed DOI

Maccaferri G, Dingledine R. Control of feedforward dendritic inhibition by NMDA receptor-dependent spike timing in hippocampal interneurons. J Neurosci. 2002;22(13):5462–72. doi: 10.1523/JNEUROSCI.22-13-05462.2002 PubMed DOI PMC

Kim JA, Connors BW. High temperatures alter physiological properties of pyramidal cells and inhibitory interneurons in hippocampus. Front Cell Neurosci. 2012;6:27. doi: 10.3389/fncel.2012.00027 PubMed DOI PMC

Raimondo JV, Burman RJ, Katz AA, Akerman CJ. Ion dynamics during seizures. Front Cell Neurosci. 2015;9:419. doi: 10.3389/fncel.2015.00419 PubMed DOI PMC

Mayer JD, Salovey P. Mayer-Salovey-Caruso emotional intelligence test. Toronto: Multi-Health Systems Incorporated; 2007.

Rossetti AO, Logroscino G, Bromfield EB. Refractory status epilepticus: effect of treatment aggressiveness on prognosis. Arch Neurol. 2005;62(11):1698–702. doi: 10.1001/archneur.62.11.1698 PubMed DOI

Holtkamp M, Othman J, Buchheim K, Meierkord H. Predictors and prognosis of refractory status epilepticus treated in a neurological intensive care unit. J Neurol Neurosurg Psychiatry. 2005;76(4):534–9. doi: 10.1136/jnnp.2004.041947 PubMed DOI PMC

Frauscher B, Bartolomei F, Baud MO, Smith RJ, Worrell G, Lundstrom BN. Stimulation to probe, excite, and inhibit the epileptic brain. Epilepsia. 2023;64 Suppl 3(Suppl 3):S49–61. doi: 10.1111/epi.17640 PubMed DOI PMC

Theodore WH, Fisher RS. Brain stimulation for epilepsy. Lancet Neurol. 2004;3(2):111–8. doi: 10.1016/s1474-4422(03)00664-1 PubMed DOI

Velasco AL, Velasco F, Jiménez F, Velasco M, Castro G, Carrillo-Ruiz JD, et al. Neuromodulation of the centromedian thalamic nuclei in the treatment of generalized seizures and the improvement of the quality of life in patients with Lennox-Gastaut syndrome. Epilepsia. 2006;47(7):1203–12. doi: 10.1111/j.1528-1167.2006.00593.x PubMed DOI

Tergau F, Naumann U, Paulus W, Steinhoff BJ. Low-frequency repetitive transcranial magnetic stimulation improves intractable epilepsy. Lancet. 1999;353(9171):2209. doi: 10.1016/S0140-6736(99)01301-X PubMed DOI

Buzsáki G, Anastassiou CA, Koch C. The origin of extracellular fields and currents–EEG, ECoG, LFP and spikes. Nat Rev Neurosci. 2012;13(6):407–20. doi: 10.1038/nrn3241 PubMed DOI PMC

Lindén H, Tetzlaff T, Potjans TC, Pettersen KH, Grün S, Diesmann M, et al. Modeling the spatial reach of the LFP. Neuron. 2011;72(5):859–72. doi: 10.1016/j.neuron.2011.11.006 PubMed DOI

Gaines JL, Finn KE, Slopsema JP, Heyboer LA, Polasek KH. A model of motor and sensory axon activation in the median nerve using surface electrical stimulation. J Comput Neurosci. 2018;45(1):29–43. doi: 10.1007/s10827-018-0689-5 PubMed DOI

Jensen MS, Yaari Y. Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. J Neurophysiol. 1997;77(3):1224–33. doi: 10.1152/jn.1997.77.3.1224 PubMed DOI

Sun J, Zheng Y, Chen Z, Wang Y. The role of Na+ -K+ -ATPase in the epileptic brain. CNS Neurosci Ther. 2022;28(9):1294–302. doi: 10.1111/cns.13893 PubMed DOI PMC

Trofimova AM, Amakhin DV, Postnikova TY, Tiselko VS, Alekseev A, Podoliak E, et al. Light-driven sodium pump as a potential tool for the control of seizures in epilepsy. Mol Neurobiol. 2024;61(7):4691–704. doi: 10.1007/s12035-023-03865-z PubMed DOI

Grisar T. Glial and neuronal Na -K pump in epilepsy. Annals of Neurology. 1984;16(S1):S128–34. PubMed

Grisar T, Guillaume D, Delgado-Escueta AV. Contribution of Na+,K(+)-ATPase to focal epilepsy: a brief review. Epilepsy Res. 1992;12(2):141–9. doi: 10.1016/0920-1211(92)90034-q PubMed DOI

Haglund MM, Schwartzkroin PA. Role of Na-K pump potassium regulation and IPSPs in seizures and spreading depression in immature rabbit hippocampal slices. J Neurophysiol. 1990;63(2):225–39. doi: 10.1152/jn.1990.63.2.225 PubMed DOI

Stafstrom CE. Persistent sodium current and its role in epilepsy. Epilepsy Curr. 2007;7(1):15–22. doi: 10.1111/j.1535-7511.2007.00156.x PubMed DOI PMC

Köhling R, Wolfart J. Potassium channels in epilepsy. Cold Spring Harb Perspect Med. 2016;6(5):a022871. doi: 10.1101/cshperspect.a022871 PubMed DOI PMC

Schlingmann KP, Bandulik S, Mammen C, Tarailo-Graovac M, Holm R, Baumann M, et al. Germline De Novo mutations in ATP1A1 cause renal hypomagnesemia, refractory seizures, and intellectual disability. Am J Hum Genet. 2018;103(5):808–16. doi: 10.1016/j.ajhg.2018.10.004 PubMed DOI PMC

Pedley TA, Zuckermann EC, Glaser GH. Epileptogenic effects of localized ventricular perfusion of ouabain on dorsal hippocampus. Exp Neurol. 1969;25(2):207–19. doi: 10.1016/0014-4886(69)90045-4 PubMed DOI

Stys PK. White matter injury mechanisms. Curr Mol Med. 2004;4(2):113–30. doi: 10.2174/1566524043479220 PubMed DOI

Clausen MV, Hilbers F, Poulsen H. The structure and function of the Na,K-ATPase isoforms in health and disease. Front Physiol. 2017;8:371. doi: 10.3389/fphys.2017.00371 PubMed DOI PMC

El Houssaini K, Bernard C, Jirsa VK. The epileptor model: a systematic mathematical analysis linked to the dynamics of seizures, refractory status epilepticus, and depolarization block. eNeuro. 2020;7(2):ENEURO.0485-18.2019. doi: 10.1523/ENEURO.0485-18.2019 PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...