High Concentrations of β2-Microglobulin Do Not Inhibit In Vitro Generation of Functional Dendritic Cells

. 2026 ; 2026 () : 2924555. [epub] 20260105

Jazyk angličtina Země Egypt Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41503517

β2-microglobulin (β2M) is a small protein playing a critical role in stabilizing major histocompatibility complex class I (MHC-I) molecules on nucleated cells. Elevated levels of β2M have been observed in several cancers, inflammatory and autoimmune conditions, and renal failures. High concentrations of β2M were reported to inhibit in vitro generation of functional dendritic cells (DCs). However, our findings showed that β2M exerts a negative effect on DCs only when contaminated with endotoxins. We found that β2M preparations with a high level of endotoxin impurities matured DCs, but that this effect was not seen with functional β2M preparations with low levels of endotoxin impurities, thus showing the maturation effect was due to endotoxin stimulation. We confirmed that the high-level endotoxin β2M compromised the in vitro differentiation of monocytes into DCs. In contrast, a low-level endotoxin β2M had no negative impact on DC differentiation nor prevented their maturation and functionality. Moreover, regardless of the levels of endotoxin impurities, β2M stabilized the expression of MHC-I molecules, confirming its functionality in the experimental settings. Our results show that β2M does not compromise the differentiation of DCs and indicate that elevated levels of β2M are unlikely to negatively regulate the immune system. These results have significant implications for understanding the functions of high β2M concentrations in clinical contexts and in vitro applications.

Zobrazit více v PubMed

Li L., Dong M., and Wang X.-G., The Implication and Significance of Beta 2 Microglobulin: A Conservative Multifunctional Regulator, Chinese Medical Journal. (2016) 129, no. 4, 448–455, 10.4103/0366-6999.176084, 2-s2.0-84958948635. PubMed DOI PMC

Ardeniz O., Unger S., and Onay H., et al.β2-Microglobulin Deficiency Causes a Complex Immunodeficiency of the Innate and Adaptive Immune System, Journal of Allergy and Clinical Immunology. (2015) 136, no. 2, 392–401, 10.1016/j.jaci.2014.12.1937, 2-s2.0-84938746200. PubMed DOI

Rao M. K. K., Sayal S. K., Uppal S. S., Gupta R. M., Ohri V. C., and Banerjee S., β-2-Microglobulin Levels in Human-Immunodeficiency Virus Infected Subjects, Medical Journal Armed Forces India. (1997) 53, no. 4, 251–254, 10.1016/S0377-1237(17)30746-3. PubMed DOI PMC

Filippin F. B. and Souza L. C., Serum β2-Microglobulin Values Among Healthy Brazilians Using a DPC IMMULITE Assay, Clinics. (2005) 60, no. 1, 47–50, 10.1590/S1807-59322005000100010, 2-s2.0-39049195302. PubMed DOI

Argyropoulos C. P., Chen S. S., and Ng Y.-H., et al.Rediscovering β-2 Microglobulin As a Biomarker Across the Spectrum of Kidney Diseases, Frontiers in Medicine. (2017) 4, 10.3389/fmed.2017.00073, 2-s2.0-85042755355, 73. PubMed DOI PMC

You T., Lin X., Zhang C., Wang W., and Lei M., Correlation Between Serum β2-Microglobulin Level and Systemic Lupus Erythematosus Disease Activity: A PRISMA-Compliant Meta-Analysis, Medicine. (2022) 101, no. 39, 10.1097/MD.0000000000030594, e30594. PubMed DOI PMC

Tsimberidou A.-M., Kantarjian H. M., and Wen S., et al.The Prognostic Significance of Serum β2 Microglobulin Levels in Acute Myeloid Leukemia and Prognostic Scores Predicting Survival: Analysis of 1180 Patients, Clinical Cancer Research. (2008) 14, no. 3, 721–730, 10.1158/1078-0432.CCR-07-2063, 2-s2.0-38949093566. PubMed DOI

Lacey J. N., Forbes M. A., Waugh M. A., Cooper E. H., and Hambling M. H., Serum Beta 2-Microglobulin and Human Immunodeficiency Virus Infection, AIDS. (1987) 1, no. 2, 123–127. PubMed

Jongvilaikasem S., Sampao S., Kanjanapradit K., Saetang J., Sangkhathat S., and Mahattanobon S., Serum β-2 Microglobulin Levels Are Associated With Distant Metastasis in Patients With Breast Cancer, Molecular and Clinical Oncology. (2021) 14, no. 6, 10.3892/mco.2021.2280, 118. PubMed DOI PMC

Wang H., Zheng H., and Cao X., et al.β2-Microglobulin and Colorectal Cancer Among Inpatients: A Case-Control Study, Scientific Reports. (2023) 13, no. 1, 10.1038/s41598-023-39162-x, 12222. PubMed DOI PMC

Chiou S.-J., Ko H.-J., Hwang C.-C., and Hong Y.-R., The Double-Edged Sword of Beta2-Microglobulin in Antibacterial Properties and Amyloid Fibril-Mediated Cytotoxicity, International Journal of Molecular Sciences. (2021) 22, no. 12, 10.3390/ijms22126330, 6330. PubMed DOI PMC

Xie J., Wang Y., Freeman M. E.III, Barlogie B., and Yi Q., β2-Microglobulin as a Negative Regulator of the Immune System: High Concentrations of the Protein Inhibit In Vitro Generation of Functional Dendritic Cells, Blood. (2003) 101, no. 10, 4005–4012, 10.1182/blood-2002-11-3368, 2-s2.0-0038264409. PubMed DOI

Stakheev D., Taborska P., Kalkusova K., Bartunkova J., and Smrz D., LL-37 as a Powerful Molecular Tool for Boosting the Performance of Ex Vivo-Produced Human Dendritic Cells for Cancer Immunotherapy, Pharmaceutics. (2022) 14, no. 12, 10.3390/pharmaceutics14122747, 2747. PubMed DOI PMC

Kalkusova K., Taborska P., and Stakheev D., et al.Impaired Proliferation of CD8(+) T Cells Stimulated With Monocyte-Derived Dendritic Cells Previously Matured With Thapsigargin-Stimulated LAD2 Human Mast Cells, Journal of Immunology Research. (2024) 2024, no. 1, 10.1155/2024/5537948, 5537948. PubMed DOI PMC

Shields M. J., Kubota R., Hodgson W., Jacobson S., Biddison W. E., and Ribaudo R. K., The Effect of Human β2-Microglobulin on Major Histocompatibility Complex I Peptide Loading and the Engineering of a High Affinity Variant, Journal of Biological Chemistry. (1998) 273, no. 43, 28010–28018, 10.1074/jbc.273.43.28010, 2-s2.0-0032561080. PubMed DOI

Atzin-Mendez J. A., Lopez-Gonzalez J. S., and Baez R., et al.Expansion of Quiescent Lung Adenocarcinoma CD8+ T Cells by MUC1-8-Mer Peptide-T2 Cell-β2 Microglobulin Complexes, Oncology Reports. (2016) 35, no. 1, 33–42, 10.3892/or.2015.4328, 2-s2.0-84954061237. PubMed DOI PMC

Palucka K. A., Taquet N., Sanchez-Chapuis F., and Gluckman J. C., Lipopolysaccharide Can Block the Potential of Monocytes to Differentiate Into Dendritic Cells, Journal of Leukocyte Biology. (1999) 65, no. 2, 232–240, 10.1002/jlb.65.2.232, 2-s2.0-0033054350. PubMed DOI

Assier E., Marin-Esteban V., Haziot A., Maggi E., Charron D., and Mooney N., TLR7/8 Agonists Impair Monocyte-Derived Dendritic Cell Differentiation and Maturation, Journal of Leukocyte Biology. (2007) 81, no. 1, 221–228, 10.1189/jlb.0705385, 2-s2.0-33845911460. PubMed DOI

Jonuleit H., Kuhn U., and Muller G., et al.Pro-Inflammatory Cytokines and Prostaglandins Induce Maturation of Potent Immunostimulatory Dendritic Cells Under Fetal Calf Serum-Free Conditions, European Journal of Immunology. (1997) 27, no. 12, 3135–3142, 10.1002/eji.1830271209, 2-s2.0-2642631750. PubMed DOI

Perdijk O., van Neerven R. J. J., Meijer B., Savelkoul H. F. J., and Brugman S., Induction of Human Tolerogenic Dendritic Cells by 3′-Sialyllactose via TLR4 Is Explained by LPS Contamination, Glycobiology. (2018) 28, no. 3, 126–130, 10.1093/glycob/cwx106, 2-s2.0-85041915831. PubMed DOI PMC

Schwarz H., Schmittner M., Duschl A., Horejs-Hoeck J., and Li L., Residual Endotoxin Contaminations in Recombinant Proteins Are Sufficient to Activate Human CD1c+ Dendritic Cells, PLoS ONE. (2014) 9, no. 12, 10.1371/journal.pone.0113840, 2-s2.0-84915821024, e113840. PubMed DOI PMC

Jeong Y. H., Lennon G., Veldman G., Serna D. M., and Ibrahimov A., Establishing Endotoxin Limits to Enhance the Reliability of In Vitro Immunogenicity Risk Assessments, mAbs. (2025) 17, no. 1, 10.1080/19420862.2025.2458627, 2458627. PubMed DOI PMC

Jin X., Xu Q., Champion K., and Kruth H. S., Endotoxin Contamination of Apolipoprotein A-I: Effect on Macrophage Proliferation – A Cautionary Tale, Atherosclerosis. (2015) 240, no. 1, 121–124, 10.1016/j.atherosclerosis.2015.03.007, 2-s2.0-84924545784. PubMed DOI PMC

Delamarre L., Holcombe H., and Mellman I., Presentation of Exogenous Antigens on Major Histocompatibility Complex (MHC) Class I and MHC Class II Molecules Is Differentially Regulated During Dendritic Cell Maturation, Journal of Experimental Medicine. (2003) 198, no. 1, 111–122, 10.1084/jem.20021542, 2-s2.0-0038491296. PubMed DOI PMC

Mellman I. and Steinman R. M., Dendritic Cells: Specialized and Regulated Antigen Processing Machines, Cell. (2001) 106, no. 3, 255–258, 10.1016/S0092-8674(01)00449-4, 2-s2.0-0035838984. PubMed DOI

Cunningham S. and Hackstein H., Rapid Generation of Monocyte-Derived Antigen-Presenting Cells With Dendritic Cell-Like Properties, Transfusion. (2021) 61, no. 6, 1845–1855, 10.1111/trf.16385. PubMed DOI

Obermaier B., Dauer M., Herten J., Schad K., Endres S., and Eigler A., Development of a New Protocol for 2-Day Generation of Mature Dendritic Cells From Human Monocytes, Biological Procedures Online. (2003) 5, no. 1, 197–203, 10.1251/bpo62, 2-s2.0-0346039286. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...