A centrally positioned cluster of multiple centrioles in antigen-presenting cells fosters T cell activation
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články
Grantová podpora
EXC 2151 - 390873048
Deutsche Forschungsgemeinschaft (German Research Foundation)
PubMed
41530195
PubMed Central
PMC12804990
DOI
10.1038/s41467-026-68286-7
PII: 10.1038/s41467-026-68286-7
Knihovny.cz E-zdroje
- MeSH
- aktivace lymfocytů * imunologie MeSH
- antigen prezentující buňky * imunologie MeSH
- centrioly * metabolismus imunologie MeSH
- centrozom metabolismus MeSH
- dendritické buňky * imunologie MeSH
- imunologické synapse imunologie MeSH
- lidé MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- organizační centrum mikrotubulů imunologie metabolismus MeSH
- T-lymfocyty * imunologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cellular polarization plays a crucial role in regulating immunological processes and is often associated with reorientation of the centrosome. During immune synapse formation, centrosome repositioning in lymphocytes assists in T cell activation. While a single centrosome, consisting of two centrioles, is present in T cells, antigen-presenting cells such as dendritic cells amplify centrioles during maturation and immune activation. How centriole amplification in antigen-presenting cells affects immune synapse formation and T cell activation is unclear. In this study, we combine experimental data with mathematical and computational modelling to provide evidence that extra centrioles in dendritic cells form over-active microtubule organizing centers, which cluster during dendritic cell-T cell interactions and, unlike in T cells, localize close to the cell center. Perturbing either centrosome integrity or centriole numbers and configuration in dendritic cells results in impaired T cell activation. Collectively, our results highlight a crucial role for centriole amplification and optimal centrosome positioning in antigen-presenting cells for controlling T cell responses.
BIOCEV 1st Faculty of Medicine Charles University Vestec Czech Republic
Department of Experimental Physics and Center for Biophysics Saarland University Saarbrücken Germany
Department of Medicine 1 CITABLE Friedrich Alexander University Erlangen Nürnberg Erlangen Germany
Department of Theoretical Physics and Center for Biophysics Saarland University Saarbrücken Germany
Deutsches Zentrum Immuntherapie Universitätsklinikum Erlangen Erlangen Germany
Faculty of Science Charles University Prague Czech Republic
Institute of Experimental Immunology University Hospital of Bonn Bonn Germany
Life and Medical Sciences Institute Immune and Tumor Biology University of Bonn Bonn Germany
Zobrazit více v PubMed
Bornens, M., Paintrand, M., Berges, J., Marty, M. & Karsenti, E. Structural and chemical characterization of isolated centrosomes. PubMed DOI
Paintrand, M., Moudjou, M., Delacroix, H. & Bornens, M. Centrosome organization and centriole architecture: their sensitivity to divalent cations. PubMed DOI
Fırat-Karalar, E. N. & Stearns, T. The centriole duplication cycle. PubMed DOI PMC
Nigg, E. A. & Holland, A. J. Once and only once: mechanisms of centriole duplication and their deregulation in disease. PubMed DOI PMC
Pereira, S. G., Louro, M. A. D. & Bettencourt-Dias, M. Biophysical and quantitative principles of centrosome biogenesis and structure. PubMed
Muroyama, A. & Lechler, T. Microtubule organization, dynamics and functions in differentiated cells. PubMed DOI PMC
Meyer‐Gerards, C. & Bazzi, H. Developmental and tissue‐specific roles of mammalian centrosomes. PubMed PMC
Carden, S. et al. Proteomic profiling of centrosomes across multiple mammalian cell and tissue types by an affinity capture method. PubMed DOI PMC
Grill, S. W. & Hyman, A. A. Spindle positioning by cortical pulling forces. PubMed DOI
Li, R. & Gundersen, G. G. Beyond polymer polarity: how the cytoskeleton builds a polarized cell. PubMed DOI
Luxton, G. G. & Gundersen, G. G. Orientation and function of the nuclear–centrosomal axis during cell migration. PubMed DOI PMC
Martín-Cófreces, N. B., Baixauli, F. & Sánchez-Madrid, F. Immune synapse: conductor of orchestrated organelle movement. PubMed DOI PMC
Grakoui, A. et al. The immunological synapse: a molecular machine controlling T cell activation. PubMed DOI
Shaw, A. S. & Dustin, M. L. Making the T cell receptor go the distance: a topological view of T cell activation. PubMed DOI
Kupfer, A. & Dennert, G. Reorientation of the microtubule-organizing center and the Golgi apparatus in cloned cytotoxic lymphocytes triggered by binding to lysable target cells. PubMed DOI
Kupfer, A., Swain, S. L. & Singer, S. J. The specific direct interaction of helper T cells and antigen-presenting B cells. II. Reorientation of the microtubule organizing center and reorganization of the membrane-associated cytoskeleton inside the bound helper T cells. PubMed DOI PMC
Kupfer, A. & Singer, S. J. The specific interaction of helper T cells and antigen-presenting B cells. IV. Membrane and cytoskeletal reorganizations in the bound T cell as a function of antigen dose. PubMed DOI PMC
Kupfer, A., Singer, S. J. & Dennert, G. On the mechanism of unidirectional killing in mixtures of two cytotoxic T lymphocytes. Unidirectional polarization of cytoplasmic organelles and the membrane-associated cytoskeleton in the effector cell. PubMed DOI PMC
Kupfer, A., Dennert, G. & Singer, S. J. The reorientation of the Golgi apparatus and the microtubule-organizing center in the cytotoxic effector cell is a prerequisite in the lysis of bound target cells. PubMed
Ueda, H., Morphew, M. K., McIntosh, J. R. & Davis, M. M. CD4+ T-cell synapses involve multiple distinct stages. PubMed DOI PMC
Stinchcombe, J. C., Majorovits, E., Bossi, G., Fuller, S. & Griffiths, G. M. Centrosome polarization delivers secretory granules to the immunological synapse. PubMed DOI
Martín-Cófreces, N. B. et al. MTOC translocation modulates IS formation and controls sustained T cell signaling. PubMed DOI PMC
Steinman, R. M. & Cohn, Z. A. Identification of a novel cell type in peripheral lymphoid organs of mice. PubMed DOI
Banchereau, J. et al. Immunobiology of dendritic cells. PubMed DOI
Kopf, A. et al. Microtubules control cellular shape and coherence in amoeboid migrating cells. PubMed DOI PMC
Weier, A.-K. et al. Multiple centrosomes enhance migration and immune cell effector functions of mature dendritic cells. PubMed DOI PMC
Quah, B. J. C., Warren, H. S. & Parish, C. R. Monitoring lymphocyte proliferation in vitro and in vivo with the intracellular fluorescent dye carboxyfluorescein diacetate succinimidyl ester. PubMed DOI
Wong, Y. L. et al. Reversible centriole depletion with an inhibitor of Polo-like kinase 4. PubMed DOI PMC
Tamzalit, F. et al. Centrioles control the capacity, but not the specificity, of cytotoxic T cell killing. PubMed DOI PMC
Ullrich, A. et al. Pretubulysin, a potent and chemically accessible tubulysin precursor from angiococcus disciformis. PubMed DOI
Braig, S. et al. Pretubulysin: a new option for the treatment of metastatic cancer. PubMed DOI PMC
Smith, K. A. Interleukin-2: Inception, Impact, and Implications. PubMed DOI
Gramaglia, I., Weinberg, A. D., Lemon, M. & Croft, M. Ox-40 ligand: a potent costimulatory molecule for sustaining primary CD4 T cell responses. PubMed DOI
Benvenuti, F. et al. Dendritic cell maturation controls adhesion, synapse formation, and the duration of the interactions with naive T lymphocytes. PubMed DOI
Mittelbrunn, M. et al. Imaging of plasmacytoid dendritic cell interactions with T cells. PubMed DOI
Liu, Z.-G., Smith, S. W., McLaughlin, K. A., Schwartz, L. M. & Osborne, B. A. Apoptotic signals delivered through the T-cell receptor of a T-cell hybrid require the immediate–early gene nur77. PubMed DOI
Moran, A. E. et al. T cell receptor signal strength in Treg and iNKT cell development demonstrated by a novel fluorescent reporter mouse. PubMed DOI PMC
Pulecio, J. et al. Cdc42-mediated MTOC polarization in dendritic cells controls targeted delivery of cytokines at the immune synapse. PubMed DOI PMC
Baker, B. M. & Chen, C. S. Deconstructing the third dimension – how 3D culture microenvironments alter cellular cues. PubMed PMC
Baumjohann, D., Okada, T. & Ansel, K. M. Cutting edge: distinct waves of BCL6 expression during T follicular helper cell development. PubMed DOI
Chiarugi, A. et al. Novel isoquinolinone-derived inhibitors of poly(ADP-ribose) polymerase-1: pharmacological characterization and neuroprotective effects in an in vitro model of cerebral ischemia. PubMed DOI
Castiel, A. et al. A phenanthrene derived PARP inhibitor is an extra-centrosomes de-clustering agent exclusively eradicating human cancer cells. PubMed DOI PMC
Korbecki, J., Barczak, K., Gutowska, I., Chlubek, D. & Baranowska-Bosiacka, I. CXCL1: gene, promoter, regulation of expression, mRNA stability, regulation of activity in the intercellular Space. PubMed DOI PMC
Zeng, Z., Lan, T., Wei, Y. & Wei, X. CCL5/CCR5 axis in human diseases and related treatments. PubMed DOI PMC
Dienz, O. & Rincon, M. The effects of IL-6 on CD4 T cell responses. PubMed DOI PMC
Heald, R. & Khodjakov, A. Thirty years of search and capture: the complex simplicity of mitotic spindle assembly. PubMed DOI PMC
Hill, T. L. Theoretical problems related to the attachment of microtubules to kinetochores. PubMed DOI PMC
Prosser, S. L. & Pelletier, L. Mitotic spindle assembly in animal cells: a fine balancing act. PubMed DOI
Sarkar, A., Rieger, H. & Paul, R. Search and capture efficiency of dynamic microtubules for centrosome relocation during IS. PubMed DOI PMC
Yi, J. et al. Centrosome repositioning in T cells is biphasic and driven by microtubule end-on capture-shrinkage. PubMed DOI PMC
Horňák, P. et al. Microstructure and mechanical properties of annealed WC/C PECVD coatings deposited using hexacarbonyl of W with different gases. PubMed DOI PMC
Oakley, C. & Brunette, D. M. The sequence of alignment of microtubules, focal contacts and actin filaments in fibroblasts spreading on smooth and grooved titanium substrata. PubMed DOI
Waterman-Storer, C. M. & Salmon, E. D. Actomyosin-based retrograde flow of microtubules in the lamella of migrating epithelial cells influences microtubule dynamic instability and turnover and is associated with microtubule breakage and treadmilling. PubMed DOI PMC
Dixit, R. & Cyr, R. Encounters between dynamic cortical microtubules promote ordering of the cortical array through angle-dependent modifications of microtubule behavior. PubMed DOI PMC
Foethke, D., Makushok, T., Brunner, D. & Nédélec, F. Force‐ and length‐dependent catastrophe activities explain interphase microtubule organization in fission yeast. PubMed DOI PMC
Picone, R. et al. A polarised population of dynamic microtubules mediates homeostatic length control in animal cells. PubMed DOI PMC
Mallick, A., Sarkar, A. & Paul, R. A force-balance model for centrosome positioning and spindle elongation during interphase and anaphase B. DOI
Letort, G., Nedelec, F., Blanchoin, L. & Théry, M. Centrosome centering and decentering by microtubule network rearrangement. PubMed DOI PMC
Som, S., Chatterjee, S. & Paul, R. Mechanistic three-dimensional model to study centrosome positioning in the interphase cell. PubMed DOI
Zhu, J., Burakov, A., Rodionov, V. & Mogilner, A. Finding the cell center by a balance of dynein and myosin pulling and microtubule pushing: a computational study. PubMed DOI PMC
Som, S. & Paul, R. Mechanistic model for nuclear migration in hyphae during mitosis. PubMed DOI
Bertrand, F. et al. An initial and rapid step of lytic granule secretion precedes microtubule organizing center polarization at the cytotoxic T lymphocyte/target cell synapse. PubMed DOI PMC
Chauveau, A., Aucher, A., Eissmann, P., Vivier, E. & Davis, D. M. Membrane nanotubes facilitate long-distance interactions between natural killer cells and target cells. PubMed DOI PMC
Bouma, G. et al. Cytoskeletal remodeling mediated by WASp in dendritic cells is necessary for normal immune synapse formation and T-cell priming. PubMed DOI
Varga, V., Leduc, C., Bormuth, V., Diez, S. & Howard, J. Kinesin-8 motors act cooperatively to mediate length-dependent microtubule depolymerization. PubMed DOI
Wu, X., Xiang, X. & Hammer, J. A. Motor proteins at the microtubule plus-end. PubMed DOI
Combs, J. et al. Recruitment of dynein to the Jurkat immunological synapse. PubMed DOI PMC
Kuhn, J. R. & Poenie, M. Dynamic polarization of the microtubule cytoskeleton during CTL-mediated killing. PubMed DOI
Bahe, S., Stierhof, Y.-D., Wilkinson, C. J., Leiss, F. & Nigg, E. A. Rootletin forms centriole-associated filaments and functions in centrosome cohesion. PubMed DOI PMC
Faragher, A. J. & Fry, A. M. Nek2A kinase stimulates centrosome disjunction and is required for formation of bipolar mitotic spindles. PubMed DOI PMC
Fry, A. M. et al. C-Nap1, a novel centrosomal coiled-coil protein and candidate substrate of the cell cycle–regulated protein kinase Nek2. PubMed DOI PMC
Mardin, B. R. et al. Components of the Hippo pathway cooperate with Nek2 kinase to regulate centrosome disjunction. PubMed DOI PMC
Decarreau, J. et al. The tetrameric kinesin Kif25 suppresses pre-mitotic centrosome separation to establish proper spindle orientation. PubMed DOI
Becker, I. C. et al. Cell cycle–dependent centrosome clustering precedes proplatelet formation. PubMed DOI PMC
Holy, T. E., Dogterom, M., Yurke, B. & Leibler, S. Assembly and positioning of microtubule asters in microfabricated chambers. PubMed DOI PMC
Dogterom, M. & Yurke, B. Measurement of the Force-Velocity Relation for Growing Microtubules. PubMed DOI
Laan, L. et al. Cortical Dynein Controls Microtubule Dynamics to Generate Pulling Forces that Position Microtubule Asters. PubMed DOI PMC
Wu, H.-Y. et al. Laser ablation and fluid flows reveal the mechanism behind spindle and centrosome positioning. DOI
Kimura, K. & Kimura, A. A novel mechanism of microtubule length-dependent force to pull centrosomes toward the cell center. PubMed DOI PMC
Schaeffer, A. et al. Microtubule-driven cell shape changes and actomyosin flow synergize to position the centrosome. PubMed DOI PMC
Sato, N. et al. Centrosome abnormalities in pancreatic ductal carcinoma. PubMed
Pihan, G. A. et al. Centrosome defects and genetic instability in malignant tumors. PubMed
Pihan, G. A., Wallace, J., Zhou, Y. & Doxsey, S. J. Centrosome abnormalities and chromosome instability occur together in pre-invasive carcinomas. PubMed
Krämer, A., Neben, K. & Ho, A. D. Centrosome aberrations in hematological malignancies. PubMed DOI
Ganem, N. J., Godinho, S. A. & Pellman, D. A mechanism linking extra centrosomes to chromosomal instability. PubMed DOI PMC
Chatterjee, S. et al. Mechanics of multicentrosomal clustering in bipolar mitotic spindles. PubMed DOI PMC
Firdous, F. et al. Centrosome clustering & chemotherapy. PubMed DOI
Yuseff, M.-I. et al. Polarized secretion of lysosomes at the B cell synapse couples antigen extraction to processing and presentation. PubMed DOI
Möller, K. et al. A role for the centrosome in regulating the rate of neuronal efferocytosis by microglia in vivo. PubMed DOI PMC
Schapfl, M. A. et al. Centrioles are frequently amplified in early B cell development but dispensable for humoral immunity. PubMed DOI PMC
Kiermaier, E., Stötzel, I., Schapfl, M. A. & Villunger, A. Amplified centrosomes—more than just a threat. PubMed PMC
Laporte, M. H., Klena, N., Hamel, V. & Guichard, P. Visualizing the native cellular organization by coupling cryofixation with expansion microscopy (Cryo-ExM). PubMed DOI PMC
Gorilak, P. et al. Expansion microscopy facilitates quantitative super-resolution studies of cytoskeletal structures in kinetoplastid parasites. PubMed DOI PMC
Holy, T. E. & Leibler, S. Dynamic instability of microtubules as an efficient way to search in space. PubMed DOI PMC
Wollman, R. et al. Efficient chromosome capture requires a bias in the ‘search-and-capture’ process during mitotic-spindle assembly. PubMed DOI
Paul, R. et al. Computer simulations predict that chromosome movements and rotations accelerate mitotic spindle assembly without compromising accuracy. PubMed DOI PMC
Pavin, N. & Tolić-Nørrelykke, I. M. Swinging a sword: how microtubules search for their targets. PubMed DOI PMC
Burakov, A. V. & Nadezhdina, E. S. Association of nucleus and centrosome: magnet or velcro? PubMed DOI