Vasoactive Effects of Chronic Treatment with ACE Inhibitor Zofenopril in Zucker Obese Diabetic Rats: The Role of Nitroso and Sul?de Signalization
Jazyk angličtina Země Česko Médium print
Typ dokumentu časopisecké články
PubMed
41532630
PubMed Central
PMC12849776
DOI
10.33549/physiolres.935722
PII: 935722
Knihovny.cz E-zdroje
- MeSH
- diabetes mellitus 2. typu * farmakoterapie metabolismus patofyziologie MeSH
- inhibitory ACE * farmakologie aplikace a dávkování terapeutické užití MeSH
- kaptopril * analogy a deriváty farmakologie aplikace a dávkování MeSH
- krevní tlak účinky léků MeSH
- krysa rodu Rattus MeSH
- obezita * metabolismus farmakoterapie patofyziologie MeSH
- oxid dusnatý * metabolismus MeSH
- potkani Zucker MeSH
- signální transdukce účinky léků fyziologie MeSH
- sulfan metabolismus MeSH
- vazodilatace účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- inhibitory ACE * MeSH
- kaptopril * MeSH
- oxid dusnatý * MeSH
- sulfan MeSH
- zofenopril MeSH Prohlížeč
Type 2 diabetes (T2D) associated with obesity is accompanied not only by metabolic but also cardiovascular disorders, including impaired vascular function. In addition to nitric oxide (NO), another gaseous transmitter, hydrogen sulfide (H2S), plays a key role in vascular homeostasis, but its function under pathological conditions is not fully understood. Escalated metabolic disorder associated with T2D could disrupt sulfide signaling and shift the balance between its pathological and compensatory action. The aim of the study was to investigate the role of H2S and NO signaling in the vascular function of obese Zucker diabetic fatty (ZDF) rats and to evaluate the impact of chronic treatment with zofenopril, an ACE inhibitor containing a sulfhydryl group. Cardiometabolic and biochemical parameters, as well as reactivity of the isolated thoracic aorta after 4 weeks of treatment, were assessed. Obese rats exhibited increased systolic blood pressure (SBP), cardiac and renal hypertrophy, increased adiposity, dyslipidemia, and impaired glucose tolerance compared with controls. Endothelium-dependent relaxation was reduced, with loss of H2S-derived relaxant component and dysregulation of NO signaling. Zofenopril significantly reduced SBP, attenuated cardiac and renal hypertrophy, and restored endothelial and contractile function. At the molecular level, it increased the expression of H2S-synthesizing enzymes, restored H2S-dependent vasorelaxation, and normalized NOS activity with a predominance of eNOS. In conclusion, zofenopril restored the balance of H2S and NO signaling in obese ZDF rats, thereby providing cardiovascular protection independent of improvements in glycemia or lipid profile. This dual mechanism may represent a promising therapeutic approach in preventing complications of obesity-induced T2D.
Zobrazit více v PubMed
Islam RA, Han X, Shaligram S, Esfandiarei M, Stallone JN, Rahimian R. Sexual dimorphism in impairment of acetylcholine-mediated vasorelaxation in zucker diabetic fatty (zdf) rat aorta: a monogenic model of obesity-induced type 2 diabetes. Int J Mol Sci. 2024;25:11328. doi: 10.3390/ijms252011328. PubMed DOI PMC
Whiteman M, Gooding KM, Whatmore JL, Ball CI, Mawson D, Skinner K, Tooke JE, et al. Adiposity is a major determinant of plasma levels of the novel vasodilator hydrogen sulphide. Diabetologia. 2010;53:1722–1726. doi: 10.1007/s00125-010-1761-5. PubMed DOI
Mitidieri E, Turnaturi C, Vanacore D, Sorrentino R, d’Emmanuele di Villa Bianca R. The role of perivascular adipose tissue-derived hydrogen sulfide in the control of vascular homeostasis. Antioxid Redox Signal. 2022;37:84–97. doi: 10.1089/ars.2021.0147. PubMed DOI
Berenyiova A, Golas S, Drobna M, Cebova M, Cacanyiova S. Fructose Intake Impairs the Synergistic Vasomotor Manifestation of Nitric Oxide and Hydrogen Sulfide in Rat Aorta. Int J Mol Sci. 2021;22:4749. doi: 10.3390/ijms22094749. PubMed DOI PMC
Berenyiova A, Bernatova I, Zemancikova A, Drobna M, Cebova M, Golas S, Balis P, et al. Vascular effects of low-dose ACE2 inhibitor MLN-4760-benefit or detriment in essential hypertension? Biomedicines. 2021;10:38. doi: 10.3390/biomedicines10010038. PubMed DOI PMC
Cacanyiova S, Berenyiova A, Malinska H, Huttl M, Markova I, Aydemir BG, Garaiova V, et al. Female prediabetic rats are protected from vascular dysfunction: the role of nitroso and sulfide signaling. Biol Res. 2024;57:91. doi: 10.1186/s40659-024-00575-1. PubMed DOI PMC
Xia Y, Zhang W, He K, Bai L, Miao Y, Liu B, Zhang X, Jin S, et al. Hydrogen sulfide alleviates lipopolysaccharide-induced myocardial injury through TLR4-NLRP3 pathway. Physiol Res. 2023;72:15–25. doi: 10.33549/physiolres.934928. PubMed DOI PMC
Citi V, Martelli A, Gorica E, Brogi S, Testai L, Calderone V. Role of hydrogen sulfide in endothelial dysfunction: Pathophysiology and therapeutic approaches. J Adv Res. 2020;27:99–113. doi: 10.1016/j.jare.2020.05.015. PubMed DOI PMC
Cacanyiova S, Cebova M, Simko F, Baka T, Bernatova I, Kluknavsky M, Zorad S, et al. The effect of zofenopril on the cardiovascular system of spontaneously hypertensive rats treated with the ACE2 inhibitor MLN-4760. Biol Res. 2023;56:55. doi: 10.1186/s40659-023-00466-x. PubMed DOI PMC
Cebova M, Klimentova J, Janega P, Pechanova O. Effect of bioactive compound of aronia melanocarpa on cardiovascular system in experimental hypertension. Oxid Med Cell Longev. 2017;2017:8156594. doi: 10.1155/2017/8156594. PubMed DOI PMC
Kluknavsky M, Micurova A, Cebova M, Şaman E, Cacanyiova S, Bernatova I. MLN-4760 Induces oxidative stress without blood pressure and behavioural alterations in shrs: roles of Nfe2l2 gene, nitric oxide and hydrogen sulfide. Antioxidants. 2022;11:2385. doi: 10.3390/antiox11122385. PubMed DOI PMC
Shen X, Pattillo CB, Pardue S, Bir SC, Wang R, Kevil CG. Measurement of plasma hydrogen sulfide in vivo and in vitro. Free Radic Biol Med. 2011;50:1021–1031. doi: 10.1016/j.freeradbiomed.2011.01.025. PubMed DOI PMC
DeMarco VG, Aroor AR, Sowers JR. The pathophysiology of hypertension in patients with obesity. Nat Rev Endocrinol. 2014;10:364–376. doi: 10.1038/nrendo.2014.44. PubMed DOI PMC
Xia N, Li H. The role of perivascular adipose tissue in obesity-induced vascular dysfunction. Br J Pharmacol. 2017;174:3425–3442. doi: 10.1111/bph.13650. PubMed DOI PMC
Donnarumma E, Ali MJ, Rushing AM, Scarborough AL, Bradley JM, Organ CL, Islam KN, et al. Zofenopril protects against myocardial ischemia-reperfusion injury by increasing nitric oxide and hydrogen sulfide bioavailability. J Am Heart Assoc. 2016;5:e003531. doi: 10.1161/JAHA.116.003531. PubMed DOI PMC
Borghi C, Omboni S. Angiotensin-converting enzyme inhibition: beyond blood pressure control-the role of zofenopril. Adv Ther. 2020;37:4068–4085. doi: 10.1007/s12325-020-01455-2. PubMed DOI
Thipsawat S. Early detection of diabetic nephropathy in patient with type 2 diabetes mellitus: A review of the literature. Diab Vasc Dis Res. 2021;18:14791641211058856. doi: 10.1177/14791641211058856. PubMed DOI PMC
Bhandari U, Kumar V, Khanna N, Panda BP. The effect of high-fat diet-induced obesity on cardiovascular toxicity in Wistar albino rats. Hum Exp Toxicol. 2011;30(9):1313–1321. doi: 10.1177/0960327110389499. PubMed DOI
Zhou YT, Grayburn P, Karim A, Shimabukuro M, Higa M, Baetens D, Orci L, et al. Lipotoxic heart disease in obese rats: implications for human obesity. Proc Natl Acad Sci U S A. 2000;97:1784–1789. doi: 10.1073/pnas.97.4.1784. PubMed DOI PMC
Egan Beňová T, Sýkora M, Ondreják Andelová K, Farkašová V, Lepáček M, Šoltésová Prnová M, Babál P, et al. Brown adipose tissue: a potential therapeutic target for preventing cardiovascular disease in metabolic disorders. Diabetol Metab Syndr. 2025;17:311. doi: 10.1186/s13098-025-01892-5. PubMed DOI PMC
Rizos EC, Tsouli S, Doumas M, Kostapanos M, Lagos K, Tselepis AD, Elisaf M. Improvement of the lipid profile with zofenopril in hypertensive patients with the metabolic syndrome. Open Clin Chem J. 2008;1:64–68. doi: 10.2174/1874241600801010064. DOI
Iida M, Murakami T, Ishida K, Mizuno A, Kuwajima M, Shima K. Substitution at codon 269 (glutamine --> proline) of the leptin receptor (OB-R) cDNA is the only mutation found in the Zucker fatty (fa/fa) rat. Biochem Biophys Res Commun. 1996;224:597–604. doi: 10.1006/bbrc.1996.1070. PubMed DOI
Lacourcière Y, Gagné C. Influence of zofenopril and low doses of hydrochlorothiazide on plasma lipoproteins in patients with mild to moderate essential hypertension. Am J Hypertens. 1989;2(11 Pt 1):861–864. doi: 10.1093/ajh/2.11.861. PubMed DOI
Oltman CL, Richou LL, Davidson EP, Coppey LJ, Lund DD, Yorek MA. Progression of coronary and mesenteric vascular dysfunction in Zucker obese and Zucker diabetic fatty rats. Am J Physiol Heart Circ Physiol. 2006;291:H1780–H1787. doi: 10.1152/ajpheart.01297.2005. PubMed DOI
Trovato FM, Castrogiovanni P, Szychlinska MA, Purrello F, Musumeci G. Impact of Western and Mediterranean diets and vitamin D on muscle fibers of sedentary rats. Nutrients. 2018;10:231. doi: 10.3390/nu10020231. PubMed DOI PMC
Berenyiova A, Cebova M, Aydemir BG, Golas S, Majzunova M, Cacanyiova S. Vasoactive Effects of Chronic Treatment with Fructose and Slow-Releasing H2S Donor GYY-4137 in Spontaneously Hypertensive Rats: The Role of Nitroso and Sulfide Signalization. Int J Mol Sci. 2022;23:9215. doi: 10.3390/ijms23169215. PubMed DOI PMC
Cacanyiova S, Krskova K, Zorad S, Frimmel K, Drobna M, Valaskova Z, Misak A, Golas S, Breza J, Breza J, Jr, et al. Arterial hypertension and plasma glucose modulate the vasoactive effects of nitroso-sulfide coupled signaling in human intrarenal arteries. Molecules. 2020;25:2886. doi: 10.3390/molecules25122886. PubMed DOI PMC
Cacanyiova S, Golas S, Zemancikova A, Majzunova M, Cebova M, Malinska H, Hüttl M, et al. The vasoactive role of perivascular adipose tissue and the sulfide signaling pathway in a nonobese model of metabolic syndrome. Biomolecules. 2021;11:108. doi: 10.3390/biom11010108. PubMed DOI PMC
Cacanyiova S, Majzunova M, Golas S, Berenyiova A. The role of perivascular adipose tissue and endogenous hydrogen sulfide in vasoactive responses of isolated mesenteric arteries in normotensive and spontaneously hypertensive rats. J Physiol Pharmacol. 2019:70. doi: 10.26402/jpp.2019.2.13. PubMed DOI
Katsouda A, Szabo C, Papapetropoulos A. Reduced adipose tissue H2S in obesity. Pharmacol Res. 2018;128:190–199. doi: 10.1016/j.phrs.2017.09.023. PubMed DOI
Candela J, Wang R, White C. Microvascular Endothelial Dysfunction in Obesity Is Driven by Macrophage-Dependent Hydrogen Sulfide Depletion. Arterioscler Thromb Vasc Biol. 2017;37:889–899. doi: 10.1161/ATVBAHA.117.309138. PubMed DOI
Leo CH, Hart JL, Woodman OL. 3’,4’-Dihydroxyflavonol reduces superoxide and improves nitric oxide function in diabetic rat mesenteric arteries. PLoS One. 2011;6:e20813. doi: 10.1371/journal.pone.0020813. PubMed DOI PMC
van der Loo B, Labugger R, Skepper JN, Bachschmid M, Kilo J, Powell JM, Palacios-Callender M, et al. Enhanced peroxynitrite formation is associated with vascular aging. J Exp Med. 2000;192:1731–1744. doi: 10.1084/jem.192.12.1731. PubMed DOI PMC
Bucci M, Vellecco V, Cantalupo A, Brancaleone V, Zhou Z, Evangelista S, Calderone V, et al. Hydrogen sulfide accounts for the peripheral vascular effects of zofenopril independently of ACE inhibition. Cardiovasc Res. 2014;102:138–147. doi: 10.1093/cvr/cvu026. PubMed DOI
Terzuoli E, Monti M, Vellecco V, Bucci M, Cirino G, Ziche M, Morbidelli L. Characterization of zofenoprilat as an inducer of functional angiogenesis through increased H2S availability. Br J Pharmacol. 2015;172:2961–2973. doi: 10.1111/bph.13101. PubMed DOI PMC