Methionine suppresses autophagy in Cryptococcus neoformans: Impact of GPP2 gene deletion on the expression of autophagy-related genes
Status Publisher Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články
PubMed
41545796
DOI
10.1007/s12223-025-01411-z
PII: 10.1007/s12223-025-01411-z
Knihovny.cz E-zdroje
- Klíčová slova
- GPR4, Amino acid uptake, Autophagy, Methionine, PMSF,
- Publikační typ
- časopisecké články MeSH
Autophagy is an essential intracellular degradation and recycling system for macromolecules and organelles, crucial for cell survival under nutrient stress conditions. In fungi, the genes involved in vesicle assembly during autophagy have been extensively characterized. However, in the pathogen Cryptococcus neoformans, the autophagy pathway remains less understood, particularly regarding its potential connections with virulence and pathogenicity. Our previous work identified Gpp2 as a key player in the biosynthesis of the sulfur-containing amino acid methionine. Through transcriptomic analysis, we observed that through transcriptomic analysis, we observed that deletion of GPP2 in C. neoformans leads to the repression of several core autophagy genes (ATG1, ATG2, ATG4, ATG15, VPS15, and VPS30), likely as an indirect consequence of altered methionine metabolism, while upregulating PEP4 expression. Since methionine is known to repress autophagy in Saccharomyces cerevisiae, we hypothesized that this amino acid might similarly regulate autophagy in C. neoformans. Our experiments demonstrated that both endogenous and exogenous methionine inhibit the expression of autophagy-related genes not only in the wild-type H99 strain but also in gpp2Δ and gpr4Δ mutant strains. Intriguingly, we found that GPR4 deletion creates a mutant unable to sense exogenous methionine, consequently releasing the repression of autophagy genes. Furthermore, microscopic analyses revealed that methionine supplementation substantially reduces autophagosome formation compared to methionine-deprived conditions. These results lead us to conclude that methionine biosynthesis regulation in gpp2Δ strains affects autophagy similarly to S. cerevisiae; GPR4 encodes a functional methionine receptor in C. neoformans; and methionine availability directly impacts autophagic flux, where the methionine receptor Gpr4 links extracellular amino acid availability to the intracellular control of autophagy likely via the Cys3/Gpp2 regulatory axis. This work provides crucial insights into the metabolic regulation of autophagy in pathogenic fungi and opens new avenues for understanding fungal pathogenesis mechanisms.
Biotechnology Graduate Program Universidade de São Paulo São Paulo Brazil
Department of Biological Sciences Universidade Federal de São Paulo Diadema São Paulo Brazil
Zobrazit více v PubMed
Bongomin F, Oladele RO, Gago S, Moore CB, Richardson MD (2018) A systematic review of fluconazole resistance in clinical isolates of Cryptococcus species. Mycoses 61:290–297. https://doi.org/10.1111/myc.12747 PubMed DOI
Calvete CL, Martho KF, Felizardo G, Paes A, Nunes JM, Ferreira CO, Vallim MA, Pascon RC (2019) Amino acid permeases in Cryptococcus neoformans are required for high temperature growth and virulence; and are regulated by Ras signaling. PLoS One 14:e0211393. https://doi.org/10.1371/journal.pone.0211393 PubMed DOI PMC
Cheon SA, Thak EJ, Bahn YS, Kang HA (2017) A novel bZIP protein, Gsb1, is required for oxidative stress response, mating, and virulence in the human pathogen Cryptococcus neoformans. Sci Rep 7:13366. https://doi.org/10.1038/s41598-017-04290-8 DOI
De Assis Gontijo F, De Melo AT, Pascon RC, Fernandes L, Paes HC, Alspaugh JA, Vallim MA (2017) The role of Aspartyl aminopeptidase (Ape4) in Cryptococcus neoformans virulence and autophagy. PLoS ONE 12:e0177461. https://doi.org/10.1371/journal.pone.0177461
Deshpande AA, Bhatia M, Laxman S, Bachhawat AK (2017) Thiol trapping and metabolic redistribution of sulfur metabolites enable cells to overcome cysteine overload. Microb Cell 4:112–126. https://doi.org/10.15698/mic2017.04.567 PubMed DOI PMC
Ding H, Caza M, Dong Y, Arif AA, Horianopoulos LC, Hu G, Kronstad JW (2018) ATG genes influence the virulence of Cryptococcus neoformans through contributions beyond core autophagy functions. Infect Immun 86:e00069–18. https://doi.org/10.1128/IAI.00069-18
Felizardo G, Padilla AAA, Melo AT, Lima RF, Jannuzzi GP, Martho KFC, Almeida SR, Ferreira KS, Pascon RC, Vallim MA (2025) The role of Pep4 protease in Cryptococcus neoformans cell survival and virulence factors. Fungal Biol 129:101611. https://doi.org/10.1016/j.funbio.2025.101611 PubMed DOI
Feng D, Chen C, Liu TB, Jiang ST, Chang AN, Han LT, Li CH, Heitman J (2020) Autophagy regulates fungal virulence and sexual reproduction in Cryptococcus neoformans. Front Cell Dev Biol 8:374. https://doi.org/10.3389/fcell.2020.00374 DOI
Fernandes JDS, Martho K, Tofik V, Vallim MA, Pascon RC (2015) The role of amino acid permeases and tryptophan biosynthesis in Cryptococcus neoformans survival. PLoS One 10:e0132369. https://doi.org/10.1371/journal.pone.0132369 PubMed DOI PMC
Gontijo FA, Pascon RC, Fernandes L, Junior JM, Alspaugh JA, Vallim MA (2014) The role of the de novo pyrimidine biosynthetic pathway in Cryptococcus neoformans high temperature growth and virulence. Fungal Genet Biol 72:16–23. https://doi.org/10.1016/j.fgb.2014.06.003 DOI
Grahl N, Cramer RA (2010) Regulation of hypoxia adaptation: an overlooked virulence attribute of pathogenic fungi? Med Mycol 48:1–15. https://doi.org/10.3109/13693780902947342 PubMed DOI
Hagen F, Khayhan K, Theelen B, Kolecka A, Polacheck I, Sionov E, Falk R, Parnmen S, Lumbsch HT, Boekhout T (2015) Recognition of seven species in the Cryptococcus gattii/Cryptococcus neoformans species complex. Fungal Genet Biol 78:16–48. https://doi.org/10.1016/j.fgb.2015.02.009 PubMed DOI
Hu G, Hacham M, Waterman SR, Panepinto J, Shin S, Liu X, Gibbons J, Valyi-Nagy T, Obara K, Jaffe HA, Ohsumi Y, Williamson PR (2008) PI3K signaling of autophagy is required for starvation tolerance and virulence of Cryptococcus neoformans. J Clin Invest 118:1186–1197. https://doi.org/10.1172/JCI32053 PubMed DOI PMC
Jarai G, Marzluf GA (1991) Sulfate transport in Neurospora crassa: regulation, turnover, and cellular localization of the CYS-14 protein. Biochemistry 30:4768–4773. https://doi.org/10.1021/bi00233a019 PubMed DOI
Jin M, Klionsky DJ (2014) Regulation of autophagy: modulation of the size and number of autophagosomes. FEBS Lett 588:2457–2463. https://doi.org/10.1016/j.febslet.2014.06.015 PubMed DOI PMC
Jung CH, Ro SH, Cao J, Otto NM, Kim DH (2010) Mtor regulation of autophagy. FEBS Lett 584:1287–1295. https://doi.org/10.1016/j.febslet.2010.01.017 PubMed DOI PMC
Jung WH, Son YE, Oh SH, Fu C, Kim HS, Kwak JH, Kim MJ, Park G, Choi J, Lee JW, Park BJ, Park YM, Bahn YS (2018) HAD1 is required for cell wall integrity and fungal virulence in Cryptococcus neoformans. G3 (Bethesda) 8:1715–1724. https://doi.org/10.1534/g3.117.300444 DOI
Kim MS, Kim SY, Yoon JK, Lee YW, Bahn YS (2009) An efficient gene-disruption method in Cryptococcus neoformans by double-joint PCR with NAT-split markers. Biochem Biophys Res Commun 390:983–988. https://doi.org/10.1016/j.bbrc.2009.10.089 PubMed DOI
Kirkin V (2020) History of the selective autophagy research: how did it begin and where does it stand today? J Mol Biol 432:3–27. https://doi.org/10.1016/j.jmb.2019.05.010 PubMed DOI PMC
Klionsky DJ, Abdelmohsen K, Abe A, Abedin MJ, Abeliovich H, Acevedo Arozena A et al (2016) Guidelines for the use and interpretation of assays for monitoring autophagy (3rd edition). Autophagy 12:1–222. https://doi.org/10.1080/15548627.2015.1100356 PubMed DOI PMC
Kroemer G, Mariño G, Levine B (2010) Autophagy and the integrated stress response. Mol Cell 40:280–293. https://doi.org/10.1016/j.molcel.2010.09.023 PubMed DOI PMC
Ktistakis NT, Tooze SA (2016) Digesting the expanding mechanisms of autophagy. Trends Cell Biol 26:624–635. https://doi.org/10.1016/j.tcb.2016.03.006 PubMed DOI
Kwon-Chung KJ, Varma A (2006) Do major species concepts support one, two or more species within Cryptococcus neoformans? FEMS Yeast Res 6:574–587. https://doi.org/10.1111/j.1567-1364.2006.00088.x PubMed DOI
Kwon-Chung KJ, Bennett JE, Wickes BL, Meyer W, Cuomo CA, Wollenburg KR, Bicanic T, Castañeda E, Chang YC, Chen J, Cogliati M, Dromer F, Ellis D, Filler SG, Fisher MC, Harrison TS, Holland SM, Kohno S, Kronstad JW, Lazera M, Levitz SM, Lionakis MS, May RC, Ngamskulrungroj P, Pappas PG, Perfect JR, Rickerts V, Sorrell TC, Walsh TJ, Williamson PR, Xu J, Zelazny AM, Casadevall A (2017) The case for adopting the “Species Complex” nomenclature for the etiologic agents of Cryptococcosis. mSphere 2:e00357-16. https://doi.org/10.1128/mSphere.00357-16 PubMed DOI PMC
Larsson K, Ansell R, Eriksson P, Adler L (1993) A gene encoding sn-glycerol 3-phosphate dehydrogenase (NAD+) complements an osmosensitive mutant of Saccharomyces cerevisiae. Mol Microbiol 10:1101–1111. https://doi.org/10.1111/j.1365-2958.1993.tb00980.x PubMed DOI
Levine B, Kroemer G (2019) Biological functions of autophagy genes: a disease perspective. Cell 176:11–42. https://doi.org/10.1016/j.cell.2018.09.048 PubMed DOI PMC
Lin X (2009) Cryptococcus neoformans: morphogenesis, infection, and evolution. Infect Genet Evol 9:401–416. https://doi.org/10.1016/j.meegid.2009.01.013 PubMed DOI
Lin X, Heitman J (2006) The biology of the Cryptococcus neoformans species complex. Annu Rev Microbiol 60:69–105. https://doi.org/10.1146/annurev.micro.60.080805.142102 PubMed DOI
Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2-ΔΔCT method. Methods 25:402–408. https://doi.org/10.1006/meth.2001.1262 PubMed DOI
Maidan MM, Thevelein JM, Van Dijck P (2005) Carbon source induced yeast-to-hypha transition in Candida albicans is dependent on the presence of amino acids and on the G-protein-coupled receptor Gpr1. Biochem Soc Trans 33:291–293. https://doi.org/10.1042/BST0330291 PubMed DOI
Maller JL (2003) Signal transduction. Fish Cell Surf Sci 300:594–595. https://doi.org/10.1126/science.1083725 DOI
Martho KFC, De Melo AT, Takahashi JPF, Guerra JM, Da Silva Santos DC, Purisco SU, Pascon RC (2016) Amino Acid permeases and virulence in Cryptococcus neoformans. PLoS One 11:e0163919. https://doi.org/10.1371/journal.pone.0163919 PubMed DOI PMC
Martho KF, Brustolini OJB, Vasconcelos AT, Vallim MA, Pascon RC (2019) The glycerol phosphatase Gpp2: a link to osmotic stress, sulfur assimilation and virulence in Cryptococcus neoformans. Front Microbiol 10:2728. https://doi.org/10.3389/fmicb.2019.02728 PubMed DOI PMC
Marzluf GA (1997) Molecular genetics of sulfur assimilation in filamentous fungi and yeast. Annu Rev Microbiol 51:73–96. https://doi.org/10.1146/annurev.micro.51.1.73 PubMed DOI
de Melo AT, Martho KF, Roberto TN, Nishiduka ES, Machado J, Brustolini OJB, Vallim MA, Pascon RC (2019) The regulation of the sulfur amino acid biosynthetic pathway in Cryptococcus neoformans: the relationship of Cys3, calcineurin, and Gpp2 phosphatases. Sci Rep 9:11923. https://doi.org/10.1038/s41598-019-48433-5 PubMed DOI PMC
Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451:1069–1075. https://doi.org/10.1038/nature06639 PubMed DOI PMC
Moretti ML, Resende MR, Lazéra MS, Colombo AL, Shikanai-Yasuda MA (2008) Consenso em neurocriptococose. Rev Soc Bras Med Trop 41:524–544. https://doi.org/10.1590/S0037-86822008000500022 PubMed DOI
Muñoz JF, McEwen JG, Clay OK, Cuomo CA (2018) Genome analysis reveals evolutionary mechanisms of adaptation in systemic dimorphic fungi. Sci Rep 8:4473. https://doi.org/10.1038/s41598-018-22816-6 PubMed DOI PMC
Norbeck J, Påhlman AK, Akhtar N, Blomberg A, Adler L (1996) Purification and characterization of two isoenzymes of DL-glycerol-3-phosphatase from Saccharomyces cerevisiae. J Biol Chem 271:13875–13881. https://doi.org/10.1074/jbc.271.23.13875 PubMed DOI
Palmer GE, Askew DS, Williamson PR (2008) The diverse roles of autophagy in medically important fungi. Autophagy 4:982–988. https://doi.org/10.4161/auto.7075 PubMed DOI
Pascon RC, Ganous TM, Kingsbury JM, Cox GM, McCusker JH (2004) Cryptococcus neoformans methionine synthase: expression analysis and requirement for virulence. Microbiology 150:3013–3023. https://doi.org/10.1099/mic.0.27235-0 PubMed DOI
Perfect JR, Bicanic T (2015) Cryptococcosis diagnosis and treatment: what do we know now. Fungal Genet Biol 78:49–54. https://doi.org/10.1016/j.fgb.2014.10.003 PubMed DOI
Prigent M, Jean-Jacques H, Naquin D, Chédin S, Cuif MH, Legouis R, Toledano MB (2024) Sulfur starvation-induced autophagy in Saccharomyces cerevisiae involves SAM-dependent signaling and transcription activator Met4. Nat Commun 15:2678. https://doi.org/10.1038/s41467-024-51309-6 DOI
Reggiori F, Klionsky DJ (2013) Autophagic processes in yeast: mechanism, machinery and regulation. Genetics 194:341–361. https://doi.org/10.1534/genetics.112.149013 PubMed DOI PMC
Roberto TN, Lima RF, Pascon RC, Idnurm A, Vallim MA (2020) Biological functions of the autophagy-related proteins Atg4 and Atg8 in Cryptococcus neoformans. PLoS One 15:e0230981. https://doi.org/10.1371/journal.pone.0230981 PubMed DOI PMC
Sadhu MJ, Moresco JJ, Zimmer AD, Yates JR, Rine J (2014) Multiple inputs control sulfur-containing amino acid synthesis in Saccharomyces cerevisiae. Mol Biol Cell 25:1653–1665. https://doi.org/10.1091/mbc.e13-12-0755 PubMed DOI PMC
Sambrook J, Russell DW (2001) Molecular Cloning: A Laboratory Manual, 3rd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor
Sidrim JJC, Rocha MFG (2012) Micologia Médica à Luz de Autores Contemporâneos. Guanabara Koogan, Rio de Janeiro
da Silva JP, Meneghini MR, Santos RS, Alves VL, da Cruz Martho KF, Vallim MA, Pascon RC (2023) ATP sulfurylase atypical leucine zipper interacts with Cys3 and calcineurin A in the regulation of sulfur amino acid biosynthesis in Cryptococcus neoformans. Sci Rep 13:12024. https://doi.org/10.1038/s41598-023-37556-5 DOI
Skowyra ML, Doering TL (2012) RNA interference in Cryptococcus neoformans. Methods Mol Biol 845:165–186. https://doi.org/10.1007/978-1-61779-539-8_11 PubMed DOI PMC
Sutter BM, Wu X, Laxman S, Tu BP (2013) Methionine inhibits autophagy and promotes growth by inducing the SAM-responsive methylation of PP2A. Cell 154:403–415. https://doi.org/10.1016/j.cell.2013.06.041 PubMed DOI PMC
Suzuki K, Kubota Y, Sekito T, Ohsumi Y (2007) Hierarchy of Atg proteins in pre-autophagosomal structure organization. Genes Cells 12:209–218. https://doi.org/10.1111/j.1365-2443.2007.01050.x PubMed DOI
Takeshige K, Baba M, Tsuboi S, Noda T, Ohsumi Y (1992) Autophagy in yeast demonstrated with proteinase-deficient mutants and conditions for its induction. J Cell Biol 119:301–311. https://doi.org/10.1083/jcb.119.2.301 PubMed DOI
Toffaletti DL, Rude TH, Johnston SA, Durack DT, Perfect JR (1993) Gene transfer in Cryptococcus neoformans by use of biolistic delivery of DNA. J Bacteriol 175:1405–1411. https://doi.org/10.1128/jb.175.5.1405-1411.1993 PubMed DOI PMC
Toh-e A, Ohkusu M, Shimizu K, Ishiwada N, Watanabe A, Kamei K (2018) Novel biosynthetic pathway for sulfur amino acids in Cryptococcus neoformans. Curr Genet 64:681–696. https://doi.org/10.1007/s00294-017-0783-7 PubMed DOI
Walvekar AS, Laxman S (2019) Methionine at the heart of anabolism and signaling: perspectives from budding yeast. Front Microbiol 10:2624. https://doi.org/10.3389/fmicb.2019.02624 PubMed DOI PMC
World Health Organization (2022) WHO fungal priority pathogens list to guide research, development and public health action. World Health Organization. https://www.who.int/publications/i/item/9789240060241 . Accessed 26 Jan 2025
Wu X, Tu BP (2011) Selective regulation of autophagy by the Iml1-Npr2-Npr3 complex in the absence of nitrogen starvation. Mol Biol Cell 22:4124–4133. https://doi.org/10.1091/mbc.e11-06-0525 PubMed DOI PMC
Xue C, Bahn YS, Cox GM, Heitman J (2006) G protein-coupled receptor Gpr4 senses amino acids and activates the cAMP-PKA pathway in Cryptococcus neoformans. Mol Biol Cell 17:667–679. https://doi.org/10.1091/mbc.e05-07-0699 PubMed DOI PMC
Yamaguchi M, Noda NN, Nakatogawa H, Kumeta H, Ohsumi Y, Inagaki F (2010) Autophagy-related protein 8 (Atg8) family interacting motif in Atg3 mediates the Atg3-Atg8 interaction and is crucial for the cytoplasm-to-vacuole targeting pathway. J Biol Chem 285:29599–29607. https://doi.org/10.1074/jbc.M110.113670 PubMed DOI PMC
Yang Z, Klionsky DJ (2010) Eaten alive: a history of macroautophagy. Nat Cell Biol 12:814–822. https://doi.org/10.1038/ncb0910-814 PubMed DOI PMC
Yuga M, Gomi K, Klionsky DJ, Shintani T (2011) Aspartyl aminopeptidase is imported from the cytoplasm to the vacuole by selective autophagy in Saccharomyces cerevisiae. J Biol Chem 286:13704–13713. https://doi.org/10.1074/jbc.M110.173906 PubMed DOI PMC
Zhao Y, Ye L, Zhao F, Zhang L, Lu Z, Chu T, Feng L, Gui Y, Zheng H, Pan W (2023) Cryptococcus neoformans, a global threat to human health. Infect Dis Poverty 12:15. https://doi.org/10.1186/s40249-023-01073-4 DOI
Zhao Y, Su H, Zhou X, Lin X (2019) Conserved Autophagy Pathway Contributes to Stress Tolerance and Virulence and Differentially Controls Autophagic Flux Upon Nutrient Starvation in Cryptococcus neoformans. Front Microbiol 10:2690. https://doi.org/10.3389/fmicb.2019.02690
Zhu XM, Li L, Wu M, Liang S, Shi HB, Liu XH, Jiang YY (2019) Current opinions on autophagy in pathogenicity of fungi. Virulence 10:481–489. https://doi.org/10.1080/21505594.2018.1551011 PubMed DOI