Recent advances in cancer nanomedicine: From smart targeting to personalized therapeutics - pioneering a new era in precision oncology
Status PubMed-not-MEDLINE Jazyk angličtina Země Anglie, Velká Británie Médium electronic-ecollection
Typ dokumentu časopisecké články, přehledy
PubMed
41560793
PubMed Central
PMC12813103
DOI
10.1016/j.mtbio.2025.102660
PII: S2590-0064(25)01232-3
Knihovny.cz E-zdroje
- Klíčová slova
- Artificial intelligence, Omics enhanced nanomedicine, Personalized nanomedicine, Stimuli-responsive nanoparticles, Translational challenges, Tumor microenvironment (TME),
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Cancer nanomedicine has evolved from the 1995 landmark approval of Doxil® into a programmable platform of precision oncology. The field now progresses along a coherent continuum that begins with passive enhanced permeability and retention (EPR)-mediated tumor accumulation, advances to active ligand-receptor targeting, and culminates in stimuli-responsive carriers whose cargo is liberated only when triggered by endogenous (acidic pH, redox imbalance, elevated GSH, dysregulated enzymes, ROS) or exogenous (light, magnetic, ultrasound, X-ray, electric) cues intrinsic to the tumor microenvironment (TME). This review maps this continuum, highlighting how the integration of patient-specific multi-omics data with artificial intelligence (AI) is converting tumor heterogeneity into quantitative design rules for nanocarrier optimization, validated in patient-derived organoids. Despite over 15 FDA-approved cancer nanomedicines and a robust clinical pipeline, translation is impeded by biological barriers, protein corona-mediated toxicity, manufacturing scalability issues, and a fragmented regulatory landscape. To bridge this bench-to-bedside chasm, we propose a convergent roadmap: safe-by-design engineering, quality-by-design modular manufacturing, and AI-guided digital twins coupled with micro/nano-robotic delivery for real-time, adaptive dosing. Realizing this vision will transform nanomedicine from an empirical carrier technology into a patient-calibrated, closed-loop therapeutic engine, cementing its role as the frontline of precision oncology.
Zobrazit více v PubMed
Bray F., Laversanne M., Sung H., Ferlay J., Siegel R.L., Soerjomataram I., Jemal A. Global cancer statistics 2022: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA Cancer J. Clin. 2024;74(3):229–263. PubMed
Zhao J., Xu L., Sun J., Song M., Wang L., Yuan S., Zhu Y., Wan Z., Larsson S., Tsilidis K. Global trends in incidence, death, burden and risk factors of early-onset cancer from 1990 to 2019. BMJ oncology. 2023;2(1) PubMed PMC
Liang G., Cao W., Tang D., Zhang H., Yu Y., Ding J., Karges J., Xiao H. Nanomedomics. ACS Nano. 2024;18(17):10979–11024. PubMed
Zheng E., Włodarczyk M., Węgiel A., Osielczak A., Możdżan M., Biskup L., Grochowska A., Wołyniak M., Gajewski D., Porc M. Navigating through novelties concerning mCRC treatment—the role of immunotherapy, chemotherapy, and targeted therapy in mCRC. Front. Surg. 2024;11 PubMed PMC
Cao J., Sun J., Zhang Y., Dong Z., Li M., Liu F., Younas A., Zhang N., Chen Y. An antigen/chemotherapy co-loaded DNA nanocube inserts into tumor cell plasma membrane and enhances chemo-and immunotherapy. Int. J. Pharm. 2025;669 PubMed
Liu B., Zhou H., Tan L., Siu K.T.H., Guan X.-Y. Exploring treatment options in cancer: tumor treatment strategies. Signal Transduct. Targeted Ther. 2024;9(1):175. PubMed PMC
Goh M., Hollewand C., McBride S., Ryan N., van der Werf B., Mathy J.A. Effect of microdoses of incisional antibiotics on the rate of surgical site infections in skin cancer surgery: a randomized clinical trial. JAMA Surg. 2023;158(7):718–726. PubMed PMC
Wang J., Wang J., Xu J., Hou T., Yin L., Chen H., Ma Y., Chen W., Wang Z., Hou Y. Anchoring a xenogeneic antigen‐guided immune activation system to tumor cell membrane for solid tumor treatment. Adv. Funct. Mater. 2022;32(22)
Tang F., Ding A., Xu Y., Ye Y., Li L., Xie R., Huang W. Gene and photothermal combination therapy: principle, materials, and amplified anticancer intervention. Small. 2024;20(6) PubMed
Cai Y., Chai T., Nguyen W., Liu J., Xiao E., Ran X., Ran Y., Du D., Chen W., Chen X. Phototherapy in cancer treatment: strategies and challenges. Signal Transduct. Targeted Ther. 2025;10(1):115. PubMed PMC
Ding Q., Qi M., Li W., Li M., Xu J., Kim Y., Kim G., Dong B., Wang L., Kim J.S. Precision phototherapy enabled by decoding complex microenvironments. Accounts Chem. Res. 2025 16673. PubMed
Yan Y., Liu S., Wen J., He Y., Duan C., Nabavi N., Ashrafizadeh M., Sethi G., Liu L., Ma R. Advances in RNA-based cancer therapeutics: pre-clinical and clinical implications. Mol. Cancer. 2025;24(1):251. PubMed PMC
Blass E., Ott P.A. Advances in the development of personalized neoantigen-based therapeutic cancer vaccines. Nat. Rev. Clin. Oncol. 2021;18(4):215–229. PubMed PMC
Gonzalez-Valdivieso J., Girotti A., Schneider J., Arias F.J. Advanced nanomedicine and cancer: challenges and opportunities in clinical translation. Int. J. Pharm. 2021;599 PubMed
Prajapati A., Rangra S., Patil R., Desai N., Jyothi V.G.S., Salave S., Amate P., Benival D., Kommineni N. Receptor-targeted nanomedicine for cancer therapy. Receptors. 2024;3(3):323–361.
Patra J.K., Das G., Fraceto L.F., Campos E.V.R., Rodriguez-Torres M.d.P., Acosta-Torres L.S., Diaz-Torres L.A., Grillo R., Swamy M.K., Sharma S. Nano based drug delivery systems: recent developments and future prospects. J. Nanobiotechnol. 2018;16(1):71. PubMed PMC
Sohail M., Rabbi F., Younas A., Hussain A., Yu B., Li Y., Iqbal S., Ullah K.H., Qadeer A., Aquib M. Elsevier; 2022. Herbal Bioactive–based Nano Drug Delivery Systems, Herbal Bioactive-based Drug Delivery Systems; pp. 169–193.
Fan D., Cao Y., Cao M., Wang Y., Cao Y., Gong T. Nanomedicine in cancer therapy. Signal Transduct. Targeted Ther. 2023;8(1):293. PubMed PMC
Fernandes S., Cassani M., Cavalieri F., Forte G., Caruso F. Emerging strategies for immunotherapy of solid tumors using lipid‐based nanoparticles. Adv. Sci. 2024;11(8) PubMed PMC
Forgham H., Chang Y., Wang Y., Zhu J., Liu L., Biggs H., Kakinen A., Jiang Y., You X., Thurecht K.J. The evolution of nanomedicine: the rise of next-generation nanomaterials in cancer nanomedicine. Sci. Adv. 2025;11(43):eadx1576. PubMed PMC
López‐Estévez A.M., Lapuhs P., Pineiro‐Alonso L., Alonso M.J. Personalized cancer nanomedicine: overcoming biological barriers for intracellular delivery of biopharmaceuticals. Adv. Mater. 2024;36(14) PubMed
Adir O., Poley M., Chen G., Froim S., Krinsky N., Shklover J., Shainsky‐Roitman J., Lammers T., Schroeder A. Integrating artificial intelligence and nanotechnology for precision cancer medicine. Adv. Mater. 2020;32(13) PubMed PMC
Hua S., De Matos M.B., Metselaar J.M., Storm G. Current trends and challenges in the clinical translation of nanoparticulate nanomedicines: pathways for translational development and commercialization. Front. Pharmacol. 2018;9:790. PubMed PMC
Bhatia S.N., Chen X., Dobrovolskaia M.A., Lammers T. Cancer nanomedicine. Nat. Rev. Cancer. 2022;22(10):550–556. PubMed PMC
Lammers T. Nanomedicine tumor targeting. Adv. Mater. 2024;36(26) PubMed
Mitchell M.J., Billingsley M.M., Haley R.M., Wechsler M.E., Peppas N.A., Langer R. Engineering precision nanoparticles for drug delivery. Nat. Rev. Drug Discov. 2021;20(2):101–124. PubMed PMC
Chehelgerdi M., Chehelgerdi M., Allela O.Q.B., Pecho R.D.C., Jayasankar N., Rao D.P., Thamaraikani T., Vasanthan M., Viktor P., Lakshmaiya N. Progressing nanotechnology to improve targeted cancer treatment: overcoming hurdles in its clinical implementation. Mol. Cancer. 2023;22(1):169. PubMed PMC
Sun L., Liu H., Ye Y., Lei Y., Islam R., Tan S., Tong R., Miao Y.-B., Cai L. Smart nanoparticles for cancer therapy. Signal Transduct. Targeted Ther. 2023;8(1):418. PubMed PMC
Moon Y., Jeon S.I., Shim M.K., Kim K. Cancer-specific delivery of proteolysis-targeting chimeras (PROTACs) and their application to cancer immunotherapy. Pharmaceutics. 2023;15(2):411. PubMed PMC
Nong J., Glassman P.M., Myerson J.W., Zuluaga-Ramirez V., Rodriguez-Garcia A., Mukalel A., Omo-Lamai S., Walsh L.R., Zamora M.E., Gong X. Targeted nanocarriers co-opting pulmonary intravascular leukocytes for drug delivery to the injured brain. ACS Nano. 2023;17(14):13121–13136. PubMed PMC
Belyaev I.B., Griaznova O.Y., Yaremenko A.V., Deyev S.M., Zelepukin I.V. Beyond the EPR effect: intravital microscopy analysis of nanoparticle drug delivery to tumors. Adv. Drug Deliv. Rev. 2025 PubMed
Park J., Choi Y., Chang H., Um W., Ryu J.H., Kwon I.C. Alliance with EPR effect: combined strategies to improve the EPR effect in the tumor microenvironment. Theranostics. 2019;9(26):8073. PubMed PMC
Ramanathan R.K., Korn R.L., Raghunand N., Sachdev J.C., Newbold R.G., Jameson G., Fetterly G.J., Prey J., Klinz S.G., Kim J. Correlation between ferumoxytol uptake in tumor lesions by MRI and response to nanoliposomal irinotecan in patients with advanced solid tumors: a pilot study. Clin. Cancer Res. 2017;23(14):3638–3648. PubMed
Golombek S.K., May J.-N., Theek B., Appold L., Drude N., Kiessling F., Lammers T. Tumor targeting via EPR: strategies to enhance patient responses. Adv. Drug Deliv. Rev. 2018;130:17–38. PubMed PMC
Ojha T., Pathak V., Shi Y., Hennink W.E., Moonen C.T., Storm G., Kiessling F., Lammers T. Pharmacological and physical vessel modulation strategies to improve EPR-mediated drug targeting to tumors. Adv. Drug Deliv. Rev. 2017;119:44–60. PubMed PMC
Yan S., Na J., Liu X., Wu P. Different targeting ligands-mediated drug delivery systems for tumor therapy. Pharmaceutics. 2024;16(2):248. PubMed PMC
Kawamoto Y., Wu Y., Park S., Hidaka K., Sugiyama H., Takahashi Y., Takakura Y. Multivalent dendritic DNA aptamer molecules for the enhancement of therapeutic effects. Chem. Commun. 2024;60(49):6256–6259. PubMed
Kaushik N., Borkar S.B., Nandanwar S.K., Panda P.K., Choi E.H., Kaushik N.K. Nanocarrier cancer therapeutics with functional stimuli-responsive mechanisms. J. Nanobiotechnol. 2022;20(1):152. PubMed PMC
Jia R., Teng L., Gao L., Su T., Fu L., Qiu Z., Bi Y. Advances in multiple stimuli-responsive drug-delivery systems for cancer therapy. Int. J. Nanomed. 2021:1525–1551. PubMed PMC
Ma W., Zhao Q., Zhu S., Wang X., Zhang C., Ma D., Li N., Yin Y. Construction of glutathione-responsive paclitaxel prodrug nanoparticles for image-guided targeted delivery and breast cancer therapy. RSC Adv. 2024;14(18):12796–12806. PubMed PMC
Hu S., Zhao R., Shen Y., Lyu B. Revolutionizing drug delivery: the power of stimulus-responsive nanoscale systems. Chem. Eng. J. 2024;496
Sun Q., Wang Z., Liu B., He F., Gai S., Yang P., Yang D., Li C., Lin J. Recent advances on endogenous/exogenous stimuli-triggered nanoplatforms for enhanced chemodynamic therapy. Coord. Chem. Rev. 2022;451
Chen X., Wu D., Chen Z. Biomedical applications of stimuli‐responsive nanomaterials. MedComm. 2024;5(8) PubMed PMC
Hossen S., Hossain M.K., Basher M., Mia M., Rahman M., Uddin M.J. Smart nanocarrier-based drug delivery systems for cancer therapy and toxicity studies: a review. J. Adv. Res. 2019;15:1–18. PubMed PMC
Liao J., Jia Y., Wu Y., Shi K., Yang D., Li P., Qian Z. Physical‐, chemical‐, and biological‐responsive nanomedicine for cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2020;12(1) PubMed
Kanamala M., Wilson W.R., Yang M., Palmer B.D., Wu Z. Mechanisms and biomaterials in pH-responsive tumour targeted drug delivery: a review. Biomaterials. 2016;85:152–167. PubMed
Liu J., Huang Y., Kumar A., Tan A., Jin S., Mozhi A., Liang X.-J. pH-sensitive nano-systems for drug delivery in cancer therapy. Biotechnol. Adv. 2014;32(4):693–710. PubMed
Qiao Y., Wan J., Zhou L., Ma W., Yang Y., Luo W., Yu Z., Wang H. Stimuli‐responsive nanotherapeutics for precision drug delivery and cancer therapy. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2019;11(1) PubMed
Meng J.-L., Dong Z.-X., Chen Y.-R., Lin M.-H., Liu Y.-C., Roffler S.R., Lin W.-W., Chang C.-Y., Tzou S.-C., Cheng T.-L. pH-responsive polyethylene glycol engagers for enhanced brain delivery of PEGylated nanomedicine to treat glioblastoma. ACS Nano. 2025;19(1):307–321. PubMed PMC
Farsani N.K., Afshari S., Poor A.S., Toutounchi A., Shahbazi Z., Ramezani S., Tajik M., Chegeni M.M., Moghaddam N.A., Abbasi H. pH-responsive mesoporous silica nanoparticles functionalized with folic acid and chitosan for targeted epirubicin delivery: in vitro and in vivo efficacy in breast cancer. Int. J. Biol. Macromol. 2025;309 PubMed
Li J., Dai Y., Wang T., Zhang X., Du P., Dong Y., Jiao Z. Polyphenol-based pH-responsive nanoparticles enhance chemo-immunotherapy in pancreatic cancer. J. Contr. Release. 2025;380:615–629. PubMed
Hare J.I., Lammers T., Ashford M.B., Puri S., Storm G., Barry S.T. Challenges and strategies in anti-cancer nanomedicine development: an industry perspective. Adv. Drug Deliv. Rev. 2017;108:25–38. PubMed
Guo X., Cheng Y., Zhao X., Luo Y., Chen J., Yuan W.-E. Advances in redox-responsive drug delivery systems of tumor microenvironment. J. Nanobiotechnol. 2018;16(1):74. PubMed PMC
Li L., Wang J., Kong H., Zeng Y., Liu G. Functional biomimetic nanoparticles for drug delivery and theranostic applications in cancer treatment. Sci. Technol. Adv. Mater. 2018;19(1):771–790. PubMed PMC
Liu M., Du H., Zhang W., Zhai G. Internal stimuli-responsive nanocarriers for drug delivery: design strategies and applications. Mater. Sci. Eng. C. 2017;71:1267–1280. PubMed
Zhang J., Lin Y., Lin Z., Wei Q., Qian J., Ruan R., Jiang X., Hou L., Song J., Ding J. Stimuli‐responsive nanoparticles for controlled drug delivery in synergistic cancer immunotherapy. Adv. Sci. 2022;9(5) PubMed PMC
Zhou Z., Wu H., Yang R., Xu A., Zhang Q., Dong J., Qian C., Sun M. GSH depletion liposome adjuvant for augmenting the photothermal immunotherapy of breast cancer. Sci. Adv. 2020;6(36):eabc4373. PubMed PMC
Lin L.S., Song J., Song L., Ke K., Liu Y., Zhou Z., Shen Z., Li J., Yang Z., Tang W. Simultaneous fenton‐like ion delivery and glutathione depletion by MnO2‐based nanoagent to enhance chemodynamic therapy. Angew. Chem. 2018;130(18):4996–5000. PubMed
Jeong Y., Shim Y.S., Jo Y.K., Cha H.J. Redox-activatable inhalable mucoadhesive proteinic nanotherapeutics for targeted treatment of lung cancer. Biomaterials. 2025;316 PubMed
Liu T., Xia F., Zheng Y., Xiao H., Yu Y., Shi J., Wang S., Shi X., He Z., Sun J. Steric hindrance-engineered redox-responsive disulfide-bridged homodimeric prodrug nanoassemblies for spatiotemporally balanced cancer chemotherapy. J. Med. Chem. 2025 PubMed
Wang Q., Guan J., Wan J., Li Z. Disulfide based prodrugs for cancer therapy. RSC Adv. 2020;10(41):24397–24409. PubMed PMC
Ray S., Li Z., Hsu C.-H., Hwang L.-P., Lin Y.-C., Chou P.-T., Lin Y.-Y. Dendrimer-and copolymer-based nanoparticles for magnetic resonance cancer theranostics. Theranostics. 2018;8(22):6322. PubMed PMC
Guo F., Du Y., Wang Y., Wang M., Wang L., Yu N., Luo S., Wu F., Yang G. Targeted drug delivery systems for matrix metalloproteinase-responsive anoparticles in tumor cells: a review. Int. J. Biol. Macromol. 2024;257 PubMed
Sharma R., Yadav V., Jha S., Dighe S., Jain S. Unveiling the potential of ursolic acid modified hyaluronate nanoparticles for combination drug therapy in triple negative breast cancer. Carbohydr. Polym. 2024;338 PubMed
Qin Y.-T., Liu X., An J.-X., Chen Z., Niu M.-T., Yan X., Li Q.-R., Rao Z.-Y., Zhang X.-Z. Oral saccharomyces cerevisiae-guided enzyme prodrug therapy combined with immunotherapy for the treatment of orthotopic colorectal cancer. ACS Nano. 2024;18(34):23497–23507. PubMed
Liu Z., Hao X., Qian J., Zhang H., Bao H., Yang Q., Gu W., Huang X., Zhang Y. Enzyme/pH dual-responsive engineered nanoparticles for improved tumor immuno-chemotherapy. ACS Appl. Mater. Interfaces. 2024;16(10):12951–12964. PubMed
Gorzeń O., Łęcka M., Ćwilichowska-Puślecka N., Majchrzak M., Horbach N., Wiśniewski J., Jakimowicz P., Szpot P., Zawadzki M., Dołęga-Kozierowski B. Engineering unnatural amino acids in peptide linkers enables cathepsin-selective antibody-drug conjugates for HER2-positive breast cancer. J. Contr. Release. 2025 PubMed
Schelske B.T., Leung E.H., Banovetz J.T., Anderson J.L., Anand R.K. Evaluation of single-cell heterogeneity and invasive potential in cancer cells via secreted protease activity assay. Anal. Chim. Acta. 2025 PubMed PMC
Zhou H., Liao Y., Han X., Chen D.S., Hong X., Zhou K., Jiang X., Xiao Y., Shi J. ROS-responsive nanoparticle delivery of mRNA and photosensitizer for combinatorial cancer therapy. Nano Lett. 2023;23(9):3661–3668. PubMed
Jia Q., Ge J., Liu W., Zheng X., Chen S., Wen Y., Zhang H., Wang P. A magnetofluorescent carbon dot assembly as an acidic H2O2‐driven oxygenerator to regulate tumor hypoxia for simultaneous bimodal imaging and enhanced photodynamic therapy. Adv. Mater. 2018;30(13) PubMed
Fu S., Yang R., Zhang L., Liu W., Du G., Cao Y., Xu Z., Cui H., Kang Y., Xue P. Biomimetic CoO@ AuPt nanozyme responsive to multiple tumor microenvironmental clues for augmenting chemodynamic therapy. Biomaterials. 2020;257 PubMed
Zhang K., Meng X., Yang Z., Dong H., Zhang X. Enhanced cancer therapy by hypoxia-responsive copper metal-organic frameworks nanosystem. Biomaterials. 2020;258 PubMed
Li L., Yang Z., Fan W., He L., Cui C., Zou J., Tang W., Jacobson O., Wang Z., Niu G. In situ polymerized hollow mesoporous organosilica biocatalysis nanoreactor for enhancing ROS‐mediated anticancer therapy. Adv. Funct. Mater. 2020;30(4) PubMed PMC
Wu C., Wang S., Zhao J., Liu Y., Zheng Y., Luo Y., Ye C., Huang M., Chen H. Biodegradable Fe (III)@ WS2‐PVP nanocapsules for redox reaction and TME‐enhanced nanocatalytic, photothermal, and chemotherapy. Adv. Funct. Mater. 2019;29(26)
Lee H., Woo J., Son D., Kim M., Choi W.I., Sung D. Electrospinning/electrospray of ferrocene containing copolymers to fabricate ROS-responsive particles and fibers. Polymers. 2020;12(11):2520. PubMed PMC
Wei J., Li J., Sun D., Li Q., Ma J., Chen X., Zhu X., Zheng N. A novel theranostic nanoplatform based on Pd@ Pt‐PEG‐Ce6 for enhanced photodynamic therapy by modulating tumor hypoxia microenvironment. Adv. Funct. Mater. 2018;28(17)
Qin Y., Liu N., Wang F., Gao Z., Luo C., Tian C., Kamei K.-i. Self-amplifying ROS-responsive SN38 prodrug nanoparticles for combined chemotherapy and ferroptosis in cancer treatment. Carbon. 2025;235
Sies H. Hydrogen peroxide as a central redox signaling molecule in physiological oxidative stress: oxidative eustress. Redox Biol. 2017;11:613–619. PubMed PMC
de Sá Junior P.L., Câmara D.A.D., Porcacchia A.S., Fonseca P.M.M., Jorge S.D., Araldi R.P., Ferreira A.K. The roles of ROS in cancer heterogeneity and therapy. Oxid. Med. Cell. Longev. 2017;2017(1) PubMed PMC
Yang B., Chen Y., Shi J. Reactive oxygen species (ROS)-based nanomedicine. Chem. Rev. 2019;119(8):4881–4985. PubMed
Du S., Li Y., Feng Y., Zhou Q., Wang J., Shaikh I.I., Song F., Younas A., Wang S., Xiao J. Multifunctional photothermal-driven PEG-grafted/CuS-loaded dendritic mesoporous organosilicon nanomotors for accelerated wound healing. Chem. Eng. J. 2025
Fleige E., Quadir M.A., Haag R. Stimuli-responsive polymeric nanocarriers for the controlled transport of active compounds: concepts and applications. Adv. Drug Deliv. Rev. 2012;64(9):866–884. PubMed
Zhao Y. Rational design of light‐controllable polymer micelles. Chem. Rec. 2007;7(5):286–294. PubMed
Shao P., Wang B., Wang Y., Li J., Zhang Y. The application of thermosensitive nanocarriers in controlled drug delivery. J. Nanomater. 2011;2011(1)
Tam L.K., Chu J.C., He L., Yang C., Han K.-C., Cheung P.C.K., Ng D.K., Lo P.-C. Enzyme-responsive double-locked photodynamic molecular beacon for targeted photodynamic anticancer therapy. J. Am. Chem. Soc. 2023;145(13):7361–7375. PubMed PMC
Sun M., Li Y., Zhang W., Gu X., Wen R., Zhang K., Mao J., Huang C., Zhang X., Nie M. Allomelanin-based biomimetic nanotherapeutics for orthotopic glioblastoma targeted photothermal immunotherapy. Acta Biomater. 2023;166:552–566. PubMed
Ye J., Fan Y., Kang Y., Ding M., Niu G., Yang J., Li R., Wu X., Liu P., Ji X. Biomimetic dual‐driven heterojunction nanomotors for targeted catalytic immunotherapy of glioblastoma. Adv. Funct. Mater. 2025;35(9)
Han X., Feng G., Li X., Mo S., Xu C., Yan J., Yu L., Zhang R., Jin Y., Xiao X. Functional nanomaterials for enhanced tumor photothermal therapy-the mechanisms and applications. Front. Pharmacol. 2025;16 PubMed PMC
Koç M.M., Paksu U., Kurnaz Yetim N., Coşkun B., Hasanoğlu Özkan E., Erkovan M. Nanoparticles in photothermal therapy-based medical and theranostic applications: an extensive review. The European Physical Journal Plus. 2025;140(6):514.
Liu D., Yang F., Xiong F., Gu N. The smart drug delivery system and its clinical potential. Theranostics. 2016;6(9):1306. PubMed PMC
Kim Y.-J., Matsunaga Y.T. Thermo-responsive polymers and their application as smart biomaterials. J. Mater. Chem. B. 2017;5(23):4307–4321. PubMed
Farias-Mancilla B., Balestri A., Zhang J., Frielinghaus H., Berti D., Montis C., Destarac M., Schubert U.S., Guerrero-Sanchez C., Harrisson S. Morphology and thermal transitions of self-assembled NIPAM-DMA copolymers in aqueous media depend on copolymer composition profile. J. Colloid Interface Sci. 2024;662:99–108. PubMed
Chen C., Zhang W., Wang P., Zhang Y., Zhu Y., Li Y., Wang R., Ren F. Thermo-responsive composite nanoparticles based on hydroxybutyl chitosan oligosaccharide: fabrication, stimulus release and cancer therapy. Int. J. Biol. Macromol. 2024;276 PubMed
Fang H., Zhang L., Wu Y., Chen L., Deng Z., Zheng Z., Wang Y., Yang Y., Chen Q. Carrier-free multifunctional nanomedicine for enhanced hyperthermic intraperitoneal chemotherapy against abdominal pelvic tumors. Chem. Eng. J. 2024;498
Yang Z., Zhou Y., Liu X., Ren L., Liu X., Yun R., Jia L., Ren X., Wang Y., Sun Y. Mitochondrial-uncoupling nanomedicine for self-heating and immunometabolism regulation in cancer cells. Biomaterials. 2025;314 PubMed
Basel M.T., Balivada S., Wang H., Shrestha T.B., Seo G.M., Pyle M., Abayaweera G., Dani R., Koper O.B., Tamura M. Cell-delivered magnetic nanoparticles caused hyperthermia-mediated increased survival in a murine pancreatic cancer model. Int. J. Nanomed. 2012:297–306. PubMed PMC
Chamundeeswari M., Jeslin J., Verma M.L. Nanocarriers for drug delivery applications. Environ. Chem. Lett. 2019;17(2):849–865.
Foo C.Y., Munir N., Kumaria A., Akhtar Q., Bullock C.J., Narayanan A., Fu R.Z. Medical device advances in the treatment of glioblastoma. Cancers. 2022;14(21):5341. PubMed PMC
Zhang Q., Kuang G., Li W., Zhao Y. Cryo‐Inactivated cancer cells derived magnetic micromotors for tumor immunotherapy. Adv. Sci. 2025 PubMed PMC
Tong S., Quinto C.A., Zhang L., Mohindra P., Bao G. Size-dependent heating of magnetic iron oxide nanoparticles. ACS Nano. 2017;11(7):6808–6816. PubMed
Xiong L., Liang B., Yu K. Magnetic hyperthermia in oncology: Nanomaterials-driven combinatorial strategies for synergistic therapeutic gains. Mater. Today Bio. 2025 PubMed PMC
Fan X., Chen H., Li Y., Feng Q., Tao F., Xu C., Chen X., Gao R., Wang Y., Guo X. Actin-targeted magnetic nanomotors mechanically modulate the tumor mechanical microenvironment for cancer treatment. ACS Nano. 2025;19(6):6454–6467. PubMed
Yang Y., Teng P., Yu S., Meng Y., Zuo J., Guo H., Liu G. A review of combined imaging and therapeutic applications based on MNMs. Front. Chem. 2025;13 PubMed PMC
Patri S., Thanh N.T.K., Kamaly N. Magnetic iron oxide nanogels for combined hyperthermia and drug delivery. Nanoscale. 2024 PubMed
Zhang Y., Jin W., Deng Z., Gao B., Zhu Y., Fu J., Xu C., Wang W., Bai T., Jiao L. Metabolic reprogramming nanomedicine potentiates colon cancer sonodynamic immunotherapy by inhibiting the CD39/CD73/ADO pathway. Acta Pharm. Sin. B. 2025 PubMed PMC
Yang K., Yue L., Yu G., Rao L., Tian R., Wei J., Yang Z., Sun C., Zhang X., Xu M. A hypoxia responsive nanoassembly for tumor specific oxygenation and enhanced sonodynamic therapy. Biomaterials. 2021;275 PubMed
Xia J., Wang J., Wang X., Qian M., Zhang L., Chen Q. Ultrasound-responsive nanoparticulate for selective amplification of chemotherapeutic potency for ablation of solid tumors. Bioconjug. Chem. 2018;29(10):3467–3475. PubMed
Ouyang J., Xie A., Zhou J., Liu R., Wang L., Liu H., Kong N., Tao W. Minimally invasive nanomedicine: nanotechnology in photo-/ultrasound-/radiation-/magnetism-mediated therapy and imaging. Chem. Soc. Rev. 2022;51(12):4996–5041. PubMed
Barmin R.A., Moosavifar M., Dasgupta A., Herrmann A., Kiessling F., Pallares R.M., Lammers T. Polymeric materials for ultrasound imaging and therapy. Chem. Sci. 2023;14(43):11941–11954. PubMed PMC
Ayana G., Ryu J., Choe S.-w. Ultrasound-responsive nanocarriers for breast cancer chemotherapy. Micromachines. 2022;13(9):1508. PubMed PMC
Chen X., Song J., Chen X., Yang H. X-ray-activated nanosystems for theranostic applications. Chem. Soc. Rev. 2019;48(11):3073–3101. PubMed
Fan W., Tang W., Lau J., Shen Z., Xie J., Shi J., Chen X. Breaking the depth dependence by nanotechnology‐enhanced X‐ray‐excited deep cancer theranostics. Adv. Mater. 2019;31(12) PubMed
Deng W., Chen W., Clement S., Guller A., Zhao Z., Engel A., Goldys E.M. Controlled gene and drug release from a liposomal delivery platform triggered by X-ray radiation. Nat. Commun. 2018;9(1):2713. PubMed PMC
Zhang L., Zhang S., Xu J., Li Y., He J., Yang Y., Huynh T., Ni P., Duan G., Yang Z. Low-dose X-ray-responsive diselenide nanocarriers for effective delivery of anticancer agents. ACS Appl. Mater. Interfaces. 2020;12(39):43398–43407. PubMed
Ren Y., Rosch J.G., Landry M.R., Winter H., Khan S., Pratx G., Sun C. Tb-Doped core–shell–shell nanophosphors for enhanced X-ray induced luminescence and sensitization of radiodynamic therapy. Biomater. Sci. 2021;9(2):496–505. PubMed PMC
Liu Y., Zhang P., Li F., Jin X., Li J., Chen W., Li Q. Metal-based nanoenhancers for future radiotherapy: radiosensitizing and synergistic effects on tumor cells. Theranostics. 2018;8(7):1824. PubMed PMC
Aishajiang R., Liu Z., Liang Y., Du P., Wei Y., Zhuo X., Liu S., Lei P., Wang T., Yu D. Concurrent amplification of ferroptosis and immune System activation via nanomedicine‐mediated radiosensitization for triple‐negative breast cancer therapy. Adv. Sci. 2025;12(7) PubMed PMC
Yu H.-J., Liu J.-H., Liu W., Niu R., Zhang B., Xiong Y., Liu Y., Wang Y.-H., Zhang H.-J. Metal-based nanomedicines for cancer theranostics. Military Medical Research. 2025;12(1):41. PubMed PMC
Sandbhor P., Palkar P., Bhat S., John G., Goda J.S. Nanomedicine as a multimodal therapeutic paradigm against cancer: on the way forward in advancing precision therapy. Nanoscale. 2024;16(13):6330–6364. PubMed
Aguilar A.A., Ho M.C., Chang E., Carlson K.W., Natarajan A., Marciano T., Bomzon Z.e., Patel C.B. Permeabilizing cell membranes with electric fields. Cancers. 2021;13(9):2283. PubMed PMC
Cheng T., Xiang Y., He X., Pang J., Zhu W., Luo L., Cao Y., Pei R. Nanostructured conductive polymers: synthesis and application in biomedicine. J. Mater. Chem. B. 2025 PubMed
Joe A., Manivasagan P., Park J.K., Han H.-W., Seo S.-H., Thambi T., Giang Phan V.H., Kang S.A., Conde J., Jang E.-S. Electric field-responsive gold nanoantennas for the induction of a locoregional tumor pH change using electrolytic ablation therapy. ACS Nano. 2024;18(30):19581–19596. PubMed PMC
Zhong S., Yao S., Zhao Q., Wang Z., Liu Z., Li L., Wang Z.L. Electricity‐assisted cancer therapy: from traditional clinic applications to emerging methods integrated with nanotechnologies. Advanced NanoBiomed Research. 2023;3(3)
Zhao Y., Tavares A.C., Gauthier M.A. Nano-engineered electro-responsive drug delivery systems. J. Mater. Chem. B. 2016;4(18):3019–3030. PubMed
Kolosnjaj-Tabi J., Gibot L., Fourquaux I., Golzio M., Rols M.-P. Electric field-responsive nanoparticles and electric fields: physical, chemical, biological mechanisms and therapeutic prospects. Adv. Drug Deliv. Rev. 2019;138:56–67. PubMed
Cheng R., Meng F., Deng C., Klok H.-A., Zhong Z. Dual and multi-stimuli responsive polymeric nanoparticles for programmed site-specific drug delivery. Biomaterials. 2013;34(14):3647–3657. PubMed
Cheng D., Ji Y., Wang B., Wang Y., Tang Y., Fu Y., Xu Y., Qian X., Zhu W. Dual-responsive nanohybrid based on degradable silica-coated gold nanorods for triple-combination therapy for breast cancer. Acta Biomater. 2021;128:435–446. PubMed
Taneja A., Panda H.S., Panda J.J., Singh T.G., Kour A. Revolutionizing precision medicine: unveiling smart stimuli‐responsive nanomedicine. Adv. Therapeut. 2025;8(8)
Yang G., Sun X., Liu J., Feng L., Liu Z. Light‐responsive, singlet‐oxygen‐triggered on‐demand drug release from photosensitizer‐doped mesoporous silica nanorods for cancer combination therapy. Adv. Funct. Mater. 2016;26(26):4722–4732.
Huang C., Ding S., Jiang W., Wang F.-B. Glutathione-depleting nanoplatelets for enhanced sonodynamic cancer therapy. Nanoscale. 2021;13(8):4512–4518. PubMed
Darya G.H., Zare O., Karbalaei-Heidari H.R., Zeinali S., Sheardown H., Rastegari B. Enzyme-responsive mannose-grafted magnetic nanoparticles for breast and liver cancer therapy and tumor-associated macrophage immunomodulation. Expet Opin. Drug Deliv. 2024;21(4):663–677. PubMed
Zou J., Jiang C., Hu Q., Jia X., Wang S., Wan S., Mao Y., Zhang D., Zhang P., Dai B. Tumor microenvironment-responsive engineered hybrid nanomedicine for photodynamic-immunotherapy via multi-pronged amplification of reactive oxygen species. Nat. Commun. 2025;16(1):424. PubMed PMC
Li C., Hua C., Chu C., Jiang M., Zhang Q., Zhang Y., Wu L., Liu J., Yang H., Yu X.-F. A photothermal-responsive multi-enzyme nanoprobe for ROS amplification and glutathione depletion to enhance ferroptosis. Biosens. Bioelectron. 2025;278 PubMed
Johnson L., Gray D.M., Niezabitowska E., McDonald T.O. Multi-stimuli-responsive aggregation of nanoparticles driven by the manipulation of colloidal stability. Nanoscale. 2021;13(17):7879–7896. PubMed
Srivastava R. Stimuli-responsive nanomaterials for the precision delivery of mRNA cancer vaccines. Nano Trends. 2025
Fuentes‐Chust C., Parolo C., Rosati G., Rivas L., Perez‐Toralla K., Simon S., de Lecuona I., Junot C., Trebicka J., Merkoçi A. The microbiome meets nanotechnology: opportunities and challenges in developing new diagnostic devices. Adv. Mater. 2021;33(18) PubMed
Song W., Anselmo A.C., Huang L. Nanotechnology intervention of the microbiome for cancer therapy. Nat. Nanotechnol. 2019;14(12):1093–1103. PubMed
Sabeel Z., Yang Z. Microbiome-targeted nanoplatforms and engineering approaches in breast cancer therapy. Mol. Cancer. 2025;24(1):276. PubMed PMC
Liu J.J., Liu D., To S.K., Wong A.S. Exosomes in cancer nanomedicine: biotechnological advancements and innovations. Mol. Cancer. 2025;24(1):166. PubMed PMC
Ebrahimi F., Kumari A., Ghadami S., Al Abdullah S., Dellinger K. The potential for extracellular vesicles in nanomedicine: a review of recent advancements and challenges ahead. Advanced Biology. 2025;9(8) PubMed PMC
Zou Z., Li H., Xu G., Hu Y., Zhang W., Tian K. Current knowledge and future perspectives of exosomes as nanocarriers in diagnosis and treatment of diseases. Int. J. Nanomed. 2023:4751–4778. PubMed PMC
Nejman D., Livyatan I., Fuks G., Gavert N., Zwang Y., Geller L.T., Rotter-Maskowitz A., Weiser R., Mallel G., Gigi E. The human tumor microbiome is composed of tumor type–specific intracellular bacteria. Science. 2020;368(6494):973–980. PubMed PMC
Zhang Y., Zhang H., Xu J., Xu Z., Lou J., Zheng Q., Yuan S., Zhu L., Xu X. Recent advances in nanomedicine for modulating intratumoral bacteria in cancer therapy. Mol. Pharm. 2025;22(10):5767–5790. PubMed
Li X., Wei H., Qi J., Ma K., Luo Y., Weng L. Interactions of nanomaterials with gut microbiota and their applications in cancer therapy. Sensors. 2023;23(9):4428. PubMed PMC
Routy B., Le Chatelier E., Derosa L., Duong C.P., Alou M.T., Daillère R., Fluckiger A., Messaoudene M., Rauber C., Roberti M.P. Gut microbiome influences efficacy of PD-1–based immunotherapy against epithelial tumors. Science. 2018;359(6371):91–97. PubMed
Zitvogel L., Ma Y., Raoult D., Kroemer G., Gajewski T.F. The microbiome in cancer immunotherapy: diagnostic tools and therapeutic strategies. Science. 2018;359(6382):1366–1370. PubMed
Sun J., Song S., Liu J., Chen F., Li X., Wu G. Gut microbiota as a new target for anticancer therapy: from mechanism to means of regulation. npj Biofilms and Microbiomes. 2025;11(1):43. PubMed PMC
Jing Z., Yinhang W., Jian C., Zhanbo Q., Xinyue W., Shuwen H. Interaction between gut microbiota and T cell immunity in colorectal cancer. Autoimmun. Rev. 2025 PubMed
Zheng D.-W., Dong X., Pan P., Chen K.-W., Fan J.-X., Cheng S.-X., Zhang X.-Z. Phage-guided modulation of the gut microbiota of mouse models of colorectal cancer augments their responses to chemotherapy. Nat. Biomed. Eng. 2019;3(9):717–728. PubMed
Xie Y., Liu F. The role of the gut microbiota in tumor, immunity, and immunotherapy. Front. Immunol. 2024;15 PubMed PMC
Yan H., Li Z., Iqbal A.Z., Cai J., Zhao Y., Li C. Nanomedicine-driven modulation of the microbiota for cancer therapy. ACS Appl. Nano Mater. 2025;8(20):10168–10188.
Das M., Kiruthiga C., Shafreen R.B., Nachammai K., Selvaraj C., Langeswaran K. Harnessing the human microbiome and its impact on immuno-oncology and nanotechnology for next-generation cancer therapies. Eur. J. Pharmacol. 2025;996 PubMed
Sha T., Tang Y., Hu X., Zhou H., Rao L. Regulating gut microbiota with nanomaterials for cancer immunotherapy. Interdisciplinary Medicine. 2025;3(2)
Kawuribi V., Xie Y., Xu H., Zhang Y., Zheng S. Nano-omics and nanomedicine target microbial carcinogenesis: tumor microenvironment reprograming to clinical translation. Crit. Rev. Oncol. Hematol. 2025 PubMed
Kim J., Zhu Y., Chen S., Wang D., Zhang S., Xia J., Li S., Qiu Q., Lee H., Wang J. Anti-glioma effect of ginseng-derived exosomes-like nanoparticles by active blood–brain-barrier penetration and tumor microenvironment modulation. J. Nanobiotechnol. 2023;21(1):253. PubMed PMC
Li J., Wang J., Chen Z. Emerging role of exosomes in cancer therapy: progress and challenges. Mol. Cancer. 2025;24(1):13. PubMed PMC
Younas A., Gu H., Zhao Y., Zhang N. Novel approaches of the nanotechnology-based drug delivery systems for knee joint injuries: a review. Int. J. Pharm. 2021;608 PubMed
Cheng Q., Shi X., Han M., Smbatyan G., Lenz H.-J., Zhang Y. Reprogramming exosomes as nanoscale controllers of cellular immunity. J. Am. Chem. Soc. 2018;140(48):16413–16417. PubMed PMC
Wang Y., Zhang Y., Cai G., Li Q. Exosomes as actively targeted nanocarriers for cancer therapy. Int. J. Nanomed. 2020:4257–4273. PubMed PMC
Harrell C.R., Volarevic A., Djonov V., Volarevic V. Mesenchymal stem-cell-derived exosomes as novel drug carriers in anti-cancer treatment: a myth or reality? Cells. 2025;14(3):202. PubMed PMC
Yang Q., Li S., Ou H., Zhang Y., Zhu G., Li S., Lei L. Exosome-based delivery strategies for tumor therapy: an update on modification, loading, and clinical application. J. Nanobiotechnol. 2024;22(1):41. PubMed PMC
Luan X., Sansanaphongpricha K., Myers I., Chen H., Yuan H., Sun D. Engineering exosomes as refined biological nanoplatforms for drug delivery. Acta Pharmacol. Sin. 2017;38(6):754–763. PubMed PMC
Rezaie J., Feghhi M., Etemadi T. A review on exosomes application in clinical trials: perspective, questions, and challenges. Cell Commun. Signal. 2022;20(1):145. PubMed PMC
Zheng W., Zhu T., Tang L., Li Z., Jiang G., Huang X. Inhalable CAR-T cell-derived exosomes as paclitaxel carriers for treating lung cancer. J. Transl. Med. 2023;21(1):383. PubMed PMC
Lin Z., Wu Y., Xu Y., Li G., Li Z., Liu T. Mesenchymal stem cell-derived exosomes in cancer therapy resistance: recent advances and therapeutic potential. Mol. Cancer. 2022;21(1):179. PubMed PMC
Chen H., Li Q. Recent advances in scalable exosome production: challenges and innovations. Chinese Journal of Plastic and Reconstructive Surgery. 2025
Vora L.K., Gholap A.D., Jetha K., Thakur R.R.S., Solanki H.K., Chavda V.P. Artificial intelligence in pharmaceutical technology and drug delivery design. Pharmaceutics. 2023;15(7):1916. PubMed PMC
Wang Q., Liu Y., Li C., Xu B., Xu S., Liu B. Machine learning‐enhanced nanoparticle design for precision cancer drug delivery. Adv. Sci. 2025 PubMed PMC
Bae H., Ji H., Konstantinov K., Sluyter R., Ariga K., Kim Y.H., Kim J.H. Artificial intelligence‐driven nanoarchitectonics for smart targeted drug delivery. Adv. Mater. 2025 PubMed PMC
Chou W.C., Canchola A., Zhang F., Lin Z. Machine learning and artificial intelligence in nanomedicine. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2025;17(4) PubMed PMC
Barretina J., Caponigro G., Stransky N., Venkatesan K., Margolin A.A., Kim S., Wilson C.J., Lehár J., Kryukov G.V., Sonkin D. The cancer cell line encyclopedia enables predictive modelling of anticancer drug sensitivity. Nature. 2012;483(7391):603–607. PubMed PMC
Weinstein J.N., Collisson E.A., Mills G.B., Shaw K.R., Ozenberger B.A., Ellrott K., Shmulevich I., Sander C., Stuart J.M. The cancer genome atlas pan-cancer analysis project. Nat. Genet. 2013;45(10):1113–1120. PubMed PMC
Laboratory D.A., Fund N.C., Site—NDRI B.C.S., Site—RPCI B.C.S., Resource—VARI B.C., of Miami B.B.R.U., Bank B.E., Management L.B.P., Study E., Battle A. Genetic effects on gene expression across human tissues. Nature. 2017;550(7675):204–213. PubMed PMC
Zhang H., Liu T., Zhang Z., Payne S.H., Zhang B., McDermott J.E., Zhou J.-Y., Petyuk V.A., Chen L., Ray D. Integrated proteogenomic characterization of human high-grade serous ovarian cancer. Cell. 2016;166(3):755–765. PubMed PMC
Liu Q., Zou J., Chen Z., He W., Wu W. Current research trends of nanomedicines. Acta Pharm. Sin. B. 2023;13(11):4391–4416. PubMed PMC
Regev A., Teichmann S.A., Lander E.S., Amit I., Benoist C., Birney E., Bodenmiller B., Campbell P., Carninci P., Clatworthy M. The human cell atlas. eLife. 2017;6 PubMed PMC
Cai Z., Poulos R.C., Liu J., Zhong Q. Machine learning for multi-omics data integration in cancer. iScience. 2022;25(2) PubMed PMC
Boehnke N., Straehla J.P., Safford H.C., Kocak M., Rees M.G., Ronan M., Rosenberg D., Adelmann C.H., Chivukula R.R., Nabar N. Massively parallel pooled screening reveals genomic determinants of nanoparticle delivery. Science. 2022;377(6604):eabm5551. PubMed PMC
Zhu M., Zhuang J., Li Z., Liu Q., Zhao R., Gao Z., Midgley A.C., Qi T., Tian J., Zhang Z. Machine-learning-assisted single-vessel analysis of nanoparticle permeability in tumour vasculatures. Nat. Nanotechnol. 2023;18(6):657–666. PubMed
Ma X., Tang Y., Wang C., Li Y., Zhang J., Luo Y., Xu Z., Wu F., Wang S. Interpretable XGBoost-SHAP model predicts nanoparticles delivery efficiency based on tumor genomic mutations and nanoparticle properties. ACS Appl. Bio Mater. 2023;6(10):4326–4335. PubMed
Sammut S.-J., Crispin-Ortuzar M., Chin S.-F., Provenzano E., Bardwell H.A., Ma W., Cope W., Dariush A., Dawson S.-J., Abraham J.E. Multi-omic machine learning predictor of breast cancer therapy response. Nature. 2022;601(7894):623–629. PubMed PMC
Qi L., Li Z., Liu J., Chen X. Omics‐enhanced nanomedicine for cancer therapy. Adv. Mater. 2024;36(50) PubMed
Cho Y.S., Han K., Xu J., Moon J.J. Novel strategies for modulating the gut microbiome for cancer therapy. Adv. Drug Deliv. Rev. 2024;210 PubMed PMC
Shahid U. Microbiome-guided precision medicine: mechanistic insights, multi-omics integration, and translational horizons. The Journal of Precision Medicine: Health and Disease. 2025
Boix-Montesinos P., Carrascosa-Marco P., Armiñán A., Vicent M.J. Identification of functional biomarkers for personalized nanomedicine in advanced breast cancer in vitro models. J. Contr. Release. 2025;381 PubMed
Garbuzenko O.B., Sapiezynski J., Girda E., Rodriguez‐Rodriguez L., Minko T. Personalized versus precision nanomedicine for treatment of ovarian cancer. Small. 2024;20(41) PubMed PMC
Hofer M., Lutolf M.P. Engineering organoids. Nat. Rev. Mater. 2021;6(5):402–420. PubMed PMC
Sun C.-P., Lan H.-R., Fang X.-L., Yang X.-Y., Jin K.-T. Organoid models for precision cancer immunotherapy. Front. Immunol. 2022;13 PubMed PMC
Zhao Z., Chen X., Dowbaj A.M., Sljukic A., Bratlie K., Lin L., Fong E.L.S., Balachander G.M., Chen Z., Soragni A. Organoids. Nat. Rev. Methods Primers. 2022;2(1):94. PubMed PMC
Sharick J.T., Walsh C.M., Sprackling C.M., Pasch C.A., Pham D.L., Esbona K., Choudhary A., Garcia-Valera R., Burkard M.E., McGregor S.M. Metabolic heterogeneity in patient tumor-derived organoids by primary site and drug treatment. Front. Oncol. 2020;10:553. PubMed PMC
Bose S., Clevers H., Shen X. Promises and challenges of organoid-guided precision medicine. Med. 2021;2(9):1011–1026. PubMed PMC
Tao B., Li X., Hao M., Tian T., Li Y., Li X., Yang C., Li Q., Feng Q., Zhou H. Organoid‐guided precision medicine: from bench to bedside. MedComm. 2025;6(5) PubMed PMC
Wang R., Hu B., Pan Z., Mo C., Zhao X., Liu G., Hou P., Cui Q., Xu Z., Wang W. Antibody–drug conjugates (ADCs): current and future biopharmaceuticals. J. Hematol. Oncol. 2025;18(1):51. PubMed PMC
Liu K., Li M., Li Y., Li Y., Chen Z., Tang Y., Yang M., Deng G., Liu H. A review of the clinical efficacy of FDA-approved antibody‒drug conjugates in human cancers. Mol. Cancer. 2024;23(1):62. PubMed PMC
Tan H.N., Morcillo M.A., Lopez J., Minchom A., Sharp A., Paschalis A., Silva-Fortes G., Raobaikady B., Banerji U. Treatment-related adverse events of antibody drug-conjugates in clinical trials. J. Hematol. Oncol. 2025;18(1):1–11. PubMed PMC
Lalli G., Sabatucci I., Paderno M., Martinelli F., Signorelli M., Maruccio M., Di Martino G., Fucà G., Lorusso D. Navigating the landscape of resistance mechanisms in antibody–drug conjugates for cancer treatment. Targeted Oncol. 2025:1–12. PubMed
June C.H., Sadelain M. Chimeric antigen receptor therapy. N. Engl. J. Med. 2018;379(1):64–73. PubMed PMC
Melenhorst J.J., Chen G.M., Wang M., Porter D.L., Chen C., Collins M.A., Gao P., Bandyopadhyay S., Sun H., Zhao Z. Decade-long leukaemia remissions with persistence of CD4+ CAR T cells. Nature. 2022;602(7897):503–509. PubMed PMC
Neelapu S.S., Tummala S., Kebriaei P., Wierda W., Gutierrez C., Locke F.L., Komanduri K.V., Lin Y., Jain N., Daver N. Chimeric antigen receptor T-cell therapy—assessment and management of toxicities. Nat. Rev. Clin. Oncol. 2018;15(1):47–62. PubMed PMC
Larson R.C., Maus M.V. Recent advances and discoveries in the mechanisms and functions of CAR T cells. Nat. Rev. Cancer. 2021;21(3):145–161. PubMed PMC
Sterner R.C., Sterner R.M. CAR-T cell therapy: current limitations and potential strategies. Blood Cancer J. 2021;11(4):69. PubMed PMC
Yang C., Li S., Wang L. Engineered iron oxide nanoplatforms: reprogramming immunosuppressive niches for precision cancer theranostics. Mol. Cancer. 2025;24(1):225. PubMed PMC
Ang M.J.Y., Metzloff A.E., Thatte A.S., Mitchell M.J. Lipid nanoparticles for engineering next generation CAR T cell immunotherapy. Nanoscale Horiz. 2025 PubMed
Adhikari A., Chen I.A. Antibody‐Nanoparticle conjugates in therapy: combining the best of two worlds. Small. 2025;21(15) PubMed PMC
Shan X., Gong X., Li J., Wen J., Li Y., Zhang Z. Current approaches of nanomedicines in the market and various stage of clinical translation. Acta Pharm. Sin. B. 2022;12(7):3028–3048. PubMed PMC
Caster J.M., Patel A.N., Zhang T., Wang A. Investigational nanomedicines in 2016: a review of nanotherapeutics currently undergoing clinical trials. Wiley Interdiscip. Rev. Nanomed. Nanobiotechnol. 2017;9(1) PubMed
Autio K.A., Dreicer R., Anderson J., Garcia J.A., Alva A., Hart L.L., Milowsky M.I., Posadas E.M., Ryan C.J., Graf R.P. Safety and efficacy of BIND-014, a docetaxel nanoparticle targeting prostate-specific membrane antigen for patients with metastatic castration-resistant prostate cancer: a phase 2 clinical trial. JAMA Oncol. 2018;4(10):1344–1351. PubMed PMC
Von Hoff D.D., Mita M.M., Ramanathan R.K., Weiss G.J., Mita A.C., LoRusso P.M., Burris H.A., III, Hart L.L., Low S.C., Parsons D.M. Phase I study of PSMA-targeted docetaxel-containing nanoparticle BIND-014 in patients with advanced solid tumors. Clin. Cancer Res. 2016;22(13):3157–3163. PubMed
Nagpal S., Nguyen K.S., Bertrand S., Cunanan K.M., Padda S.K., Pagtama J.Y., Tisch A.H., Coffey G., Thomas R.P., Sledge G.W., Jr. Etirinotecan pegol (NKTR‐102) in patients with active brain metastases from lung or breast cancer. Cancer Reports. 2025;8(9) PubMed PMC
Milano G., Innocenti F., Minami H. Liposomal irinotecan (Onivyde): exemplifying the benefits of nanotherapeutic drugs. Cancer Sci. 2022;113(7):2224–2231. PubMed PMC
Zhang H. Onivyde for the therapy of multiple solid tumors. OncoTargets Ther. 2016:3001–3007. PubMed PMC
Brucker J., Mayer C., Gebauer G., Mallmann P., Belau A.K., Schneeweiss A., Sohn C., Eichbaum M. Non-pegylated liposomal doxorubicin for patients with recurrent ovarian cancer: a multicentric phase II trial. Oncol. Lett. 2016;12(2):1211–1215. PubMed PMC
Green M., Manikhas G., Orlov S., Afanasyev B., Makhson A., Bhar P., Hawkins M. Abraxane®, a novel cremophor®-free, albumin-bound particle form of paclitaxel for the treatment of advanced non-small-cell lung cancer. Ann. Oncol. 2006;17(8):1263–1268. PubMed
Redruello-Guerrero P., Cordoba-Pelaez P., Lainez-Ramos-Bossini A.J., Rivera-Izquierdo M., Mesas C., Ortiz R., Prados J., Perazzoli G. Liposomal doxorubicin in vitro and in vivo assays in non-small cell lung cancer: a systematic review. Curr. Drug Deliv. 2024;21(10):1346–1361. PubMed
Barenholz Y.C. Doxil®—the first FDA-approved nano-drug: lessons learned. J. Contr. Release. 2012;160(2):117–134. PubMed
Kaur J., Gulati M., Jha N.K., Disouza J., Patravale V., Dua K., Singh S.K. Recent advances in developing polymeric micelles for treating cancer: breakthroughs and bottlenecks in their clinical translation. Drug Discov. Today. 2022;27(5):1495–1512. PubMed
Borgå O., Lilienberg E., Bjermo H., Hansson F., Heldring N., Dediu R. Pharmacokinetics of total and unbound paclitaxel after administration of paclitaxel micellar or nab-paclitaxel: an open, randomized, cross-over, explorative study in breast cancer patients. Adv. Ther. 2019;36(10):2825–2837. PubMed PMC
Halwani A.A. Development of pharmaceutical nanomedicines: from the bench to the market. Pharmaceutics. 2022;14(1):106. PubMed PMC
Pourmadadi M., Ghaemi A., Shamsabadipour A., Rajabzadeh-Khosroshahi M., Shaghaghi M., Rahdar A., Pandey S. Nanoparticles loaded with Daunorubicin as an advanced tool for cancer therapy. Eur. J. Med. Chem. 2023;258 PubMed
Salehi B., Selamoglu Z., Mileski K.S., Pezzani R., Redaelli M., Cho W.C., Kobarfard F., Rajabi S., Martorell M., Kumar P. Liposomal cytarabine as cancer therapy: from chemistry to medicine. Biomolecules. 2019;9(12):773. PubMed PMC
Baldrick P. Nonclinical testing evaluation of liposomes as drug delivery systems. Int. J. Toxicol. 2023;42(2):122–134. PubMed
Colombo I., Koster K.-L., Holer L., Haefliger S., Rabaglio M., Bastian S., Schwitter M., Eckhardt K., Hayoz S., Mc Laughlin A.M. TLD-1, a novel liposomal doxorubicin, in patients with advanced solid tumors: dose escalation and expansion part of a multicenter open-label phase I trial (SAKK 65/16) Eur. J. Cancer. 2024;201 PubMed
Kim E.-A., Choi H.G., Nguyen B.L., Oh S.-J., Lee S.-B., Bae S.H., Park S.Y., Kim J.O., Kim S.H., Lim S.-J. Pre-mixing of omega-3 fatty acid-containing liposomes enhances the drug release rate and therapeutic efficacy of anticancer drugs loaded in liposomes. J. Contr. Release. 2024;366:410–424. PubMed
Anderson P., Meyers P., Kleinerman E., Venkatakrishnan K., Hughes D., Herzog C., Huh W., Sutphin R., Vyas Y., Shen V. Mifamurtide in metastatic and recurrent osteosarcoma: a patient access study with pharmacokinetic, pharmacodynamic, and safety assessments. Pediatr. Blood Cancer. 2014;61(2):238–244. PubMed PMC
Buttitta G., Bonacorsi S., Barbarito C., Moliterno M., Pompei S., Saito G., Oddone I., Verdone G., Secci D., Raimondi S. Scalable microfluidic method for tunable liposomal production by a design of experiment approach. Int. J. Pharm. 2024;662 PubMed
Silverman J.A., Deitcher S.R. Marqibo®(vincristine sulfate liposome injection) improves the pharmacokinetics and pharmacodynamics of vincristine. Cancer Chemother. Pharmacol. 2013;71(3):555–564. PubMed PMC
Burade V., Bhowmick S., Maiti K., Zalawadia R., Ruan H., Thennati R. Lipodox®(generic doxorubicin hydrochloride liposome injection): in vivo efficacy and bioequivalence versus caelyx®(doxorubicin hydrochloride liposome injection) in human mammary carcinoma (MX-1) xenograft and syngeneic fibrosarcoma (WEHI 164) mouse models. BMC Cancer. 2017;17(1):405. PubMed PMC
Dinndorf P.A., Gootenberg J., Cohen M.H., Keegan P., Pazdur R. FDA drug approval summary: pegaspargase (Oncaspar®) for the first-line treatment of children with acute lymphoblastic leukemia (ALL) Oncologist. 2007;12(8):991–998. PubMed
Kim S.-B., Seo J.H., Ahn J.-H., Kim T.-Y., Kang S.Y., Sohn J., Yang Y., Park K.H., Moon Y.W., Lim S. Phase II study of DHP107 (oral paclitaxel) in the first-line treatment of HER2-negative recurrent or metastatic breast cancer (OPTIMAL study) Ther. Adv. Med. Oncol. 2021;13 PubMed PMC
Kim S.C., Kim D.W., Shim Y.H., Bang J.S., Oh H.S., Kim S.W., Seo M.H. In vivo evaluation of polymeric micellar paclitaxel formulation: toxicity and efficacy. J. Contr. Release. 2001;72(1–3):191–202. PubMed
Zhang J., Pan Y., Shi Q., Zhang G., Jiang L., Dong X., Gu K., Wang H., Zhang X., Yang N. Paclitaxel liposome for injection (Lipusu) plus cisplatin versus gemcitabine plus cisplatin in the first‐line treatment of locally advanced or metastatic lung squamous cell carcinoma: a multicenter, randomized, open‐label, parallel controlled clinical study. Cancer Commun. 2022;42(1):3–16. PubMed PMC
Koudelka Š., Turánek J. Liposomal paclitaxel formulations. J. Contr. Release. 2012;163(3):322–334. PubMed
Duvic M., Talpur R. Optimizing denileukin diftitox (Ontak®) therapy. Future Oncol. 2008;4(4):457–469. PubMed
Krauss A.C., Gao X., Li L., Manning M.L., Patel P., Fu W., Janoria K.G., Gieser G., Bateman D.A., Przepiorka D. FDA approval summary:(daunorubicin and cytarabine) liposome for injection for the treatment of adults with high-risk acute myeloid leukemia. Clin. Cancer Res. 2019;25(9):2685–2690. PubMed
Bernards N., Ventura M., Fricke I.B., Hendriks B.S., Fitzgerald J., Lee H., Zheng J. Liposomal irinotecan achieves significant survival and tumor burden control in a triple negative breast cancer model of spontaneous metastasis. Mol. Pharm. 2018;15(9):4132–4138. PubMed
Miller K., Cortes J., Hurvitz S.A., Krop I.E., Tripathy D., Verma S., Riahi K., Reynolds J.G., Wickham T.J., Molnar I. HERMIONE: a randomized Phase 2 trial of MM-302 plus trastuzumab versus chemotherapy of physician's choice plus trastuzumab in patients with previously treated, anthracycline-naïve, HER2-positive, locally advanced/metastatic breast cancer. BMC Cancer. 2016;16(1):352. PubMed PMC
de Lázaro I., Mooney D.J. Obstacles and opportunities in a forward vision for cancer nanomedicine. Nat. Mater. 2021;20(11):1469–1479. PubMed
Chaurasia M., Singh R., Sur S., Flora S. A review of FDA approved drugs and their formulations for the treatment of breast cancer. Front. Pharmacol. 2023;14 PubMed PMC
Zhang P., Xiao Y., Sun X., Lin X., Koo S., Yaremenko A.V., Qin D., Kong N., Farokhzad O.C., Tao W. Cancer nanomedicine toward clinical translation: obstacles, opportunities, and future prospects. Med. 2023;4(3):147–167. PubMed
Bilynsky C., Millot N., Papa A.L. Radiation nanosensitizers in cancer therapy—From preclinical discoveries to the outcomes of early clinical trials. Bioeng. Transl. Med. 2022;7(1) PubMed PMC
Ali F., Neha K., Parveen S. Current regulatory landscape of nanomaterials and nanomedicines: a global perspective. J. Drug Deliv. Sci. Technol. 2023;80
Joyce P., Allen C.J., Alonso M.J., Ashford M., Bradbury M.S., Germain M., Kavallaris M., Langer R., Lammers T., Peracchia M.T. A translational framework to DELIVER nanomedicines to the clinic. Nat. Nanotechnol. 2024;19(11):1597–1611. PubMed
Milewska S., Niemirowicz-Laskowska K., Siemiaszko G., Nowicki P., Wilczewska A.Z., Car H. Current trends and challenges in pharmacoeconomic aspects of nanocarriers as drug delivery systems for cancer treatment. Int. J. Nanomed. 2021:6593–6644. PubMed PMC
Anaya J.-M., Herrán M., Pino L.E. Challenges and opportunities for precision medicine in developing nations. Expert Review of Precision Medicine and Drug Development. 2025;10(1):1–15.
Lin G., Zhou J., Cheng H., Liu G. Smart nanosystems for overcoming multiple biological barriers in cancer nanomedicines transport: design principles, progress, and challenges. Small. 2023;19(28) PubMed
Sun Y., Zhou Y., Rehman M., Wang Y.-F., Guo S. Protein corona of nanoparticles: isolation and analysis. Chem & Bio Engineering. 2024;1(9):757–772. PubMed PMC
Sarimov R.M., Molkova E.A., Simakin A.V., Dorokhov A.S., Gudkov S.V. Protein Corona as a result of interaction of protein molecules with inorganic nanoparticles. Int. J. Mol. Sci. 2025;26(19):9771. PubMed PMC
Morbidelli M., Papini E., Tavano R. Essential protocols for decoding the composition and the functional effects of the nanoparticle protein corona. Frontiers in Nanotechnology. 2024;6
Frumento D., Ţălu Ş. The influence of carbon nanotubes and graphene on immune cells. Cells. 2025;14(21):1700. PubMed PMC
Cui G., Zhang L., Zaky A.A., Liu R., Wang H., Tan M. Protein coronas formed by three blood proteins and food-borne carbon dots from roast mackerel: effects on cytotoxicity and cellular metabolites. Int. J. Biol. Macromol. 2022;216:799–809. PubMed
Voke E., Arral M.L., Squire H.J., Lin T.-J., Zheng L., Coreas R., Lui A., Iavarone A.T., Pinals R.L., Whitehead K.A. Protein corona formed on lipid nanoparticles compromises delivery efficiency of mRNA cargo. Nat. Commun. 2025;16(1):1–16. PubMed PMC
Debayle M., Balloul E., Dembele F., Xu X., Hanafi M., Ribot F., Monzel C., Coppey M., Fragola A., Dahan M. Zwitterionic polymer ligands: an ideal surface coating to totally suppress protein-nanoparticle corona formation? Biomaterials. 2019;219 PubMed
Tonigold M., Simon J., Estupiñán D., Kokkinopoulou M., Reinholz J., Kintzel U., Kaltbeitzel A., Renz P., Domogalla M.P., Steinbrink K. Pre-adsorption of antibodies enables targeting of nanocarriers despite a biomolecular corona. Nat. Nanotechnol. 2018;13(9):862–869. PubMed
Wietrzyk A., Hutny A., Jonderko L., Biliński K., Makieła M., Kalinin J., Jachimska B., Kulbacka J. Protein-functionalized nanoparticles: emerging strategies in drug delivery. Biomed. Pharmacother. 2025;189 PubMed
Bashiri G., Padilla M.S., Swingle K.L., Shepherd S.J., Mitchell M.J., Wang K. Nanoparticle protein corona: from structure and function to therapeutic targeting. Lab Chip. 2023;23(6):1432–1466. PubMed PMC
Zhao T., Ren M., Shi J., Wang H., Bai J., Du W., Xiang B. Engineering the protein corona: strategies, effects, and future directions in nanoparticle therapeutics. Biomed. Pharmacother. 2024;175 PubMed
Desai N., Rana D., Patel M., Bajwa N., Prasad R., Vora L.K. Nanoparticle therapeutics in clinical perspective: classification, marketed products, and regulatory landscape. Small. 2025 PubMed PMC
Wolfram J., Zhu M., Yang Y., Shen J., Gentile E., Paolino D., Fresta M., Nie G., Chen C., Shen H. Safety of nanoparticles in medicine. Curr. Drug Targets. 2015;16(14):1671–1681. PubMed PMC
Liu X., Tang I., Wainberg Z.A., Meng H. Safety considerations of cancer nanomedicine—a key step toward translation. Small. 2020;16(36) PubMed PMC
Agrahari V., Agrahari V. Facilitating the translation of nanomedicines to a clinical product: challenges and opportunities. Drug Discov. Today. 2018;23(5):974–991. PubMed
Clogston J.D., Foss W., Harris D., Oberoi H., Pan J., Pu E., Guzmán E.A.T., Walter K., Brown S., Soo P.L. Current state of nanomedicine drug products: an industry perspective. J. Pharmaceut. Sci. 2024;113(12):3395–3405. PubMed PMC
He M., Yang T., Wang Y., Wang M., Chen X., Ding D., Zheng Y., Chen H. Immune checkpoint inhibitor‐based strategies for synergistic cancer therapy. Adv. Healthcare Mater. 2021;10(9) PubMed
Jiang J., Yan Y., Yang C., Cai H. Immunogenic cell death and metabolic reprogramming in cancer: mechanisms, synergies, and innovative therapeutic strategies. Biomedicines. 2025;13(4):950. PubMed PMC
Liu L.L., Skribek M., Harmenberg U., Gerling M. Systemic inflammatory syndromes as life-threatening side effects of immune checkpoint inhibitors: case report and systematic review of the literature. J. Immunother. Cancer. 2023;11(3) PubMed PMC
Xu Y., Fu Y., Zhu B., Wang J., Zhang B. Predictive biomarkers of immune checkpoint inhibitors-related toxicities. Front. Immunol. 2020;11:2023. PubMed PMC
Von Itzstein M.S., Yang Y., Wang Y., Hsiehchen D., Sheffield T.Y., Fattah F., Popat V., Ahmed M., Homsi J., Dowell J.E. Highly variable timing renders immunotherapy efficacy and toxicity impractical biomarkers of one another in clinical practice. Front. Immunol. 2024;15 PubMed PMC
Csóka I., Ismail R., Jójárt-Laczkovich O., Pallagi E. Regulatory considerations, challenges and risk-based approach in nanomedicine development. Curr. Med. Chem. 2021;28(36):7461–7476. PubMed
Stumpp N.E., Sauer-Zavala S. Evidence-based strategies for treatment personalization: a review. Cognit. Behav. Pract. 2022;29(4):902–913.
Zheng X., Song X., Zhu G., Pan D., Li H., Hu J., Xiao K., Gong Q., Gu Z., Luo K. Nanomedicine combats drug resistance in lung cancer. Adv. Mater. 2024;36(3) PubMed
Zhang S., Wang J., Ahn J. Advances in the discovery of efflux pump inhibitors as novel potentiators to control antimicrobial-resistant pathogens. Antibiotics. 2023;12(9):1417. PubMed PMC
Mao J., Qiu L., Ge L., Zhou J., Ji Q., Yang Y., Long M., Wang D., Teng L., Chen J. Overcoming multidrug resistance by intracellular drug release and inhibiting p-glycoprotein efflux in breast cancer. Biomed. Pharmacother. 2021;134 PubMed
Dong J., Yuan L., Hu C., Cheng X., Qin J.-J. Strategies to overcome cancer multidrug resistance (MDR) through targeting P-glycoprotein (ABCB1): an updated review. Pharmacol. Therapeut. 2023;249 PubMed
Luo X., Germer J., Burghardt T., Grau M., Lin Y., Höhn M., Lächelt U., Wagner E. Dual pH-responsive CRISPR/Cas9 ribonucleoprotein xenopeptide complexes for genome editing. Eur. J. Pharmaceut. Sci. 2025;205 PubMed
Chou W.-C., Chen Q., Yuan L., Cheng Y.-H., He C., Monteiro-Riviere N.A., Riviere J.E., Lin Z. An artificial intelligence-assisted physiologically-based pharmacokinetic model to predict nanoparticle delivery to tumors in mice. J. Contr. Release. 2023;361:53–63. PubMed PMC
Rosenblum D., Joshi N., Tao W., Karp J.M., Peer D. Progress and challenges towards targeted delivery of cancer therapeutics. Nat. Commun. 2018;9(1):1410. PubMed PMC
da Silva R.G.L. The advancement of artificial intelligence in biomedical research and health innovation: challenges and opportunities in emerging economies. Glob. Health. 2024;20(1):44. PubMed PMC
Tan B.K.J., Teo C.B., Tadeo X., Peng S., Soh H.P.L., Du S.D.X., Luo V.W.Y., Bandla A., Sundar R., Ho D. Personalised, rational, efficacy-driven cancer drug dosing via an artificial intelligence SystEm (PRECISE): a protocol for the PRECISE CURATE. AI pilot clinical trial. Front. Digit. Health. 2021;3 PubMed PMC
Castellano G., Giugliano F., Curigliano G., Marra A. Clinical utility of genomic signatures for the management of early and metastatic triple-negative breast cancer. Curr. Opin. Oncol. 2023;35(6):479–490. PubMed
Keam S.J. Zanidatamab: first approval. Drugs. 2025:1–8. PubMed
Rane K., Kukreja G., Deshmukh S., Kakad U., Jadhav P., Patole V. Robotic pills as innovative personalized medicine tools: a mini review, recent advances in drug delivery and formulation. Formerly Recent Patents on Drug Delivery & Formulation. 2024;18(1):2–11. PubMed
Becker D., Zhang J., Heimbach T., Penland R.C., Wanke C., Shimizu J., Kulmatycki K. Novel orally swallowable IntelliCap® device to quantify regional drug absorption in human GI tract using diltiazem as model drug. AAPS PharmSciTech. 2014;15(6):1490–1497. PubMed PMC
Chen E., Prakash S., Janapa Reddi V., Kim D., Rajpurkar P. A framework for integrating artificial intelligence for clinical care with continuous therapeutic monitoring. Nat. Biomed. Eng. 2025;9(4):445–454. PubMed
Afroz M., Nyakwende E., Goswami B. Internet of Things in Bioelectronics: Emerging Technologies and Applications. 2024. Pioneering implantable IoT: a new era of precision medicine for humans and animals unveiling the future of medicine through implantable technology; pp. 145–169.
Reddy B.N., Saravanan S., Manjunath V., Reddy P.R.S. Review on next-gen healthcare: the role of MEMS and nanomaterials in enhancing diagnostic and therapeutic outcomes. Biomaterials Connect. 2024;1(1):1–10.
Dong H., Lin J., Tao Y., Jia Y., Sun L., Li W.J., Sun H. AI-enhanced biomedical micro/nanorobots in microfluidics. Lab Chip. 2024;24(5):1419–1440. PubMed
Singh A.V., Ansari M.H.D., Laux P., Luch A. Micro-nanorobots: important considerations when developing novel drug delivery platforms. Expet Opin. Drug Deliv. 2019;16(11):1259–1275. PubMed
Salehi A., Hosseinpour S., Tabatabaei N., Soltani Firouz M., Zadebana N., Nauber R., Medina‐Sánchez M. Advancements in machine learning for microrobotics in biomedicine. Advanced Intelligent Systems. 2024
Li W., Tang J., Lee D., Tice T.R., Schwendeman S.P., Prausnitz M.R. Clinical translation of long-acting drug delivery formulations. Nat. Rev. Mater. 2022;7(5):406–420.
Sohail M., Sun Z., Li Y., Gu X., Xu H. Research progress in strategies to improve the efficacy and safety of doxorubicin for cancer chemotherapy. Expet Rev. Anticancer Ther. 2021;21(12):1385–1398. PubMed
Jing Z., Du Q., Zhang X., Zhang Y. Nanomedicines and nanomaterials for cancer therapy: progress, challenge and perspectives. Chem. Eng. J. 2022;446
Domingues C., Santos A., Alvarez-Lorenzo C., Concheiro A., Jarak I., Veiga F., Barbosa I., Dourado M., Figueiras A. Where is nano today and where is it headed? A review of nanomedicine and the dilemma of nanotoxicology. ACS Nano. 2022;16(7):9994–10041. PubMed
Sun D., Zhou S., Gao W. What went wrong with anticancer nanomedicine design and how to make it right. ACS Nano. 2020;14(10):12281–12290. PubMed
Zhang X., Goedegebuure S.P., Chen M.Y., Mishra R., Zhang F., Yu Y.Y., Singhal K., Li L., Gao F., Myers N.B. Neoantigen DNA vaccines are safe, feasible, and induce neoantigen-specific immune responses in triple-negative breast cancer patients. Genome Med. 2024;16(1):131. PubMed PMC
Zhao Z., Ukidve A., Kim J., Mitragotri S. Targeting strategies for tissue-specific drug delivery. Cell. 2020;181(1):151–167. PubMed
Monopoli M.P., Aberg C., Salvati A., Dawson K.A. Nano-Enabled Medical Applications. 2020. Biomolecular coronas provide the biological identity of nanosized materials; pp. 205–229. PubMed
Sheibani S., Basu K., Farnudi A., Ashkarran A., Ichikawa M., Presley J.F., Bui K.H., Ejtehadi M.R., Vali H., Mahmoudi M. Nanoscale characterization of the biomolecular corona by cryo-electron microscopy, cryo-electron tomography, and image simulation. Nat. Commun. 2021;12(1):573. PubMed PMC
Kaymaz S.V., Nobar H.M., Sarıgül H., Soylukan C., Akyüz L., Yüce M. Nanomaterial surface modification toolkit: principles, components, recipes, and applications. Adv. Colloid Interface Sci. 2023;322 PubMed
Di Iorio D., Huskens J. Surface modification with control over ligand density for the study of multivalent biological systems. ChemistryOpen. 2020;9(1):53–66. PubMed PMC
Mukhare R., Gandhi K.A., Kadam A., Raja A., Singh A., Madhav M., Chaubal R., Pandey S., Gupta S. Integration of organoids with CRISPR screens: a narrative review. Biol. Cell. 2025;117(4) PubMed PMC
Huzar J., Coreas R., Landry M.P., Tikhomirov G. AI-Based prediction of protein corona composition on DNA nanostructures. ACS Nano. 2025;19(4):4333–4345. PubMed PMC
Li T., Gu Z., Zhou G. Next-generation barcoding for single-cell omics. Anal. Chem. 2025;97(31):16708–16713. PubMed
Gomerdinger V.F., Nabar N., Hammond P.T. Advancing engineering design strategies for targeted cancer nanomedicine. Nat. Rev. Cancer. 2025:1–27. PubMed