Towards Zero-Waste Valorization of African Catfish By-Products Through Integrated Biotechnological Processing and Life Cycle Assessment

. 2026 Jan 01 ; 12 (1) : . [epub] 20260101

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41590071

Grantová podpora
IGA/FT/2025/006 Tomas Bata University in Zlín
DKRVO - RP/CPS/2024-28/002 Ministry of Education, Youth and Sports of Czech Republic

African catfish (Clarias gariepinus, AC) is one of the most widely farmed freshwater fish species in Central Europe. Processing operations generate up to 55% by-products (BPs), predominantly carcasses rich in proteins, lipids, and minerals. This study develops a comprehensive valorization process for ACBPs to recover gelatin, protein hydrolysate, fish oil, and pigments. The processing protocol consisted of sequential washing, oil extraction, demineralization, and biotechnological treatment to disrupt the collagen quaternary structure. A two-factor experimental design was employed to optimize the processing conditions. The factors included the extraction temperatures of the first (35-45 °C) and second fraction (50-60 °C). We hypothesized that enzymatic conditioning, combined with sequential hot-water extraction, would yield gelatin with properties comparable to those of mammalian- and fish-derived gelatins, while enabling a near-zero-waste process. The integrated process yielded 18.2 ± 1.2% fish oil, 9.8 ± 2.1% protein hydrolysate, 1.7 ± 0.7% pigment extract, and 25.3-37.8% gelatin. Optimal conditions (35 °C/60 °C) produced gelatin with gel strength of 168.8 ± 3.6 Bloom, dynamic viscosity of 2.48 ± 0.02 mPa·s, and yield of 34.76 ± 1.95%. Life cycle assessment (LCA) identified two primary environmental hotspots: water consumption and energy demand. This near-zero-waste biorefinery demonstrates the potential for comprehensive valorization of aquaculture BPs into multiple value-added bioproducts.

Zobrazit více v PubMed

The State of World Fisheries and Aquaculture 2024|Blue Transformation in Action. [(accessed on 12 November 2025)]. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/1273bc36-339b-43d2-8163-af4d805f2ad2/content/sofia/2024/fisheries-aquaculture-projections.html.

The Global Growth of By-Products|IFFO—The Marine Ingredients Organisation. [(accessed on 12 November 2025)]. Available online: https://www.iffo.com/global-growth-products.

Sarker M.Z.I., Selamat J., Habib A.S.M.A., Ferdosh S., Akanda M.J.H., Jaffri J.M. Optimization of supercritical CO2 Extraction of fish oil from viscera of African Catfish (Clarias gariepinus) Int. J. Mol. Sci. 2012;13:11312–11322. doi: 10.3390/ijms130911312. PubMed DOI PMC

Okomoda V.T., Tiamiyu L.O., Ricketts A.O., Oladimeji S.A., Agbara A., Ikhwanuddin M., Alabi K.I., Abol-Munafi A.B. Hydrothermal processing of Clarias gariepinus (Burchell, 1822) filets: Insights on the nutritive value and organoleptic parameters. Vet. Sci. 2020;7:133. doi: 10.3390/vetsci7030133. PubMed DOI PMC

The State of World Fisheries and Aquaculture 2022—Towards Blue Transformation. [(accessed on 12 November 2025)]. Available online: https://openknowledge.fao.org/server/api/core/bitstreams/1b0c8294-8746-41a4-aea7-e87fd996a13f/content.

Hungary: EU-Funded Research Project to Boost Production of African Catfish. [(accessed on 12 November 2025)]. Available online: https://eurofish.dk/news/hungary-eu-funded-research-project-to-boost-production-of-african-catfish/#:~:text=Hungary’s%20annual%20production%20of%20African,the%20species%20in%20the%20EU.

Peteri A., Moth-Poulsen T., Kovacs E., Toth I., Woynarovich A. African Catfish (Clarias gariepinus, Burchell 1822) Production with Special Reference to Temperate Zones: A Manual. FAO; Rome, Italy: 2015. 93p

Zeleke Tilinti B., Birhanu Ayichiluhim T., Mekonnen Tura A., Duraisamy R. Extraction and characterizations of omega 3-fatty acid from cat fish collected from Arba Minch Chamo Lake. Cogent Food Agric. 2023;9:2216042. doi: 10.1080/23311932.2023.2216042. DOI

Abdel-Mobdy H.E., Abdel-Aal H.A., Souzan S.L., Nassar A.G. Nutritional value of African catfish (Clarias gariepinus) meat. Asian J. Appl. Chem. Res. 2021;8:31–39. doi: 10.9734/ajacr/2021/v8i230190. DOI

Ruiz-Salmón I., Laso J., Margallo M., Villanueva-Rey P., Rodríguez E., Quinteiro P., Dias A.C., Almeida C., Nunes M.L., Marques A., et al. Life cycle assessment of fish and seafood processed products—A review of methodologies and new challenges. Sci. Total Environ. 2021;761:144094. doi: 10.1016/j.scitotenv.2020.144094. PubMed DOI

Poore J., Nemecek T. Reducing food’s environmental impacts through producers and consumers. Science. 2018;360:987–992. doi: 10.1126/science.aaq0216. PubMed DOI

Noreen S., Siddiqa A., Fatima R., Anwar F., Adnan M., Raza A. Protease production and purification from agro-industrial waste by utilizing Penicillium digitatum. Int. J. Appl. Biol. Forensics. 2017;1:119–129.

Rao M.B., Tanksale A.M., Ghatge M.S., Deshpande V.V. Molecular and biotechnological aspects of microbial proteases. Microbiol. Mol. Biol. Rev. 1998;62:597–635. doi: 10.1128/MMBR.62.3.597-635.1998. PubMed DOI PMC

See S.F., Ghassem M., Mamot S., Babji A.S. Effect of different pretreatments on functional properties of African catfish (Clarias gariepinus) skin gelatin. J. Food Sci. Technol. 2013;52:753–762. doi: 10.1007/s13197-013-1043-6. PubMed DOI PMC

Usman M., Sahar A., Inam-Ur-Raheem M., Ur Rahman U., Sameen A., Aadil R.M. Gelatin extraction from fish waste and potential applications in food sector. Int. J. Food Sci. Technol. 2022;57:154–163. doi: 10.1111/ijfs.15286. DOI

Ahmed J., Basu S. Advances in Food Rheology and Its Applications—Development in Food Rheology. 2nd ed. Elsevier; Amsterdam, The Netherlands: 2023. [(accessed on 10 November 2025)]. p. 591. Available online: https://app.knovel.com/hotlink/pdf/id:kt013G5UM5/advances-in-food-rheology/rheology-g-introduction.

Joy J.M., Padmaprakashan A., Pradeep A., Paul P.T., Mannuthy R.J., Mathew S. A review on fish skin-derived gelatin: Elucidating the gelatin peptides—Preparation, bioactivity, mechanistic insights, and strategies for stability improvement. Foods. 2024;13:2793. doi: 10.3390/foods13172793. PubMed DOI PMC

Al-Nimry S., Abu Dayah A., Hasan I., Daghmash R. Cosmetic, biomedical and pharmaceutical applications of fish gelatin/hydrolysates. Mar. Drugs. 2021;19:145. doi: 10.3390/md19030145. PubMed DOI PMC

Sinthusamran S., Benjakul S., Kishimura H. Characteristics and gel properties of gelatin from skin of seabass (Lates calcarifer) as influenced by extraction conditions. Food Chem. 2014;152:276–284. doi: 10.1016/j.foodchem.2013.11.109. PubMed DOI

Derkach S.R., Voron’ko N.G., Kuchina Y.A., Kolotova D.S. Modified fish gelatin as an alternative to mammalian gelatin in modern food technologies. Polymers. 2020;12:3051. doi: 10.3390/polym12123051. PubMed DOI PMC

Al Khawli F., Pateiro M., Domínguez R., Lorenzo J.M., Gullón P., Kousoulaki K., Ferrer E., Berrada H., Barba F.J. Innovative green technologies of intensification for valorization of seafood and their by-products. Mar. Drugs. 2019;17:689. doi: 10.3390/md17120689. PubMed DOI PMC

Mokrejš P., Gál R., Pavlačková J., Janáčová D. Valorization of a by-product from the production of mechanically deboned chicken meat for preparation of gelatins. Molecules. 2021;26:349. doi: 10.3390/molecules26020349. PubMed DOI PMC

Saibu G.M., Adeyemo G.A., Adu O.B., Avoseh O.N., Phillips I.M., Ayeni T.O., Nwatulegwu B.I., Anetekhai M.A. Comparative analysis of physicochemical properties and fatty acid profiles of crude and purified oil from African catfish (Clarias gariepinus) J. Food Stab. 2025;8:14–25.

Eke-Ejiofor J., Ansa E.J. Effect of extraction methods on the quality characteristics of catfish (Clarias gariepinus) oil. Am. J. Food Sci. Technol. 2018;6:199–203.

Habib A.S.M.A., Sarkar P. Extraction and identification of PUFA from African catfish (Clarias gariepinus) skin. Int. J. Fish. Aquat. Stud. 2016;4:312–314.

Huang T.-H., Wang P.-W., Yang S.-C., Chou W.-L., Fang J.-Y. Cosmetic and therapeutic applications of fish oil’s fatty acids on the skin. Mar. Drugs. 2018;16:256. doi: 10.3390/md16080256. PubMed DOI PMC

Atmadja T., Kusharto C., Sinaga T. Supplementation of catfish (Clarias gariepinus) oil enriched with omega-3 soft capsule improves oxidative stress and cognitive function in elderly. J. Nutr. Sci. Vitaminol. 2020;66:S47–S50. doi: 10.3177/jnsv.66.S47. PubMed DOI

Jensen M.B., Jakobsen J., Jacobsen C., Sloth J.J., Ibarruri J., Bald C., Iñarra B., Bøknæs N., Sørensen A.-D.M. Content and bioaccessibility of minerals and proteins in fish-bone containing side-streams from seafood industries. Mar. Drugs. 2024;22:162. doi: 10.3390/md22040162. PubMed DOI PMC

FAO The State of World Fisheries and Aquaculture 2004. [(accessed on 13 November 2025)]. Available online: https://www.fao.org/4/t8389e/T8389E00.htm.

Chapman F.A., Miles R.D. EDIS 2018. Volume 3. University of Florida Extension; Gainesville, FL, USA: 2018. How ornamental fish get their color: FA192. DOI

Wojdalski J., Krajnik M., Borowski P.F., Dróżdż B., Kupczyk A. Energy and water efficiency in the gelatine production plant. AIMS Geosci. 2020;6:491–503. doi: 10.3934/geosci.2020027. DOI

Sampaio A.P.C., de Sá M., de Sousa Filho M., Castro A.L.A., de Figueirêdo M.C.B. Life cycle assessment from early development stages: The case of gelatin extracted from tilapia residues. Int. J. Life Cycle Assess. 2017;22:767–783. doi: 10.1007/s11367-016-1179-5. DOI

Ma Y., Zeng X., Ma X., Yang R., Zhao W. A simple and eco-friendly method of gelatin production from bone: One-step biocatalysis. J. Clean. Prod. 2018;200:916–926. doi: 10.1016/j.jclepro.2018.07.239. DOI

Thirukumaran R., Anu Priya V.K., Krishnamoorthy S., Ramakrishnan P., Moses J.A., Anandharamakrishnan C. Resource recovery from fish waste: Prospects and the usage of intensified extraction technologies. Chemosphere. 2022;299:134361. doi: 10.1016/j.chemosphere.2022.134361. PubMed DOI

Oluwaniyi O., Dosumu O., Awolola G. Effect of Cooking Method on the Proximate, Amino Acid, and Fatty Acid Compositions of Clarias gariepinus and Oreochromis niloticus. J. Turk. Chem. Soc. Sect. A Chem. 2017;4:115–132. doi: 10.18596/jotcsa.53143. DOI

Osibona A.O., Kusemiju K., Akande G.R. Proximate composition and fatty acids profile of the African catfish Clarias gariepinus. ActaSatech J. Life Phys. Sci. 2009;3:85–89.

Adeyemi R.S., Akande G.R. Thermophysical properties of farmed African freshwater Catfish (Clarias gariepinus) fillet for process design and optimization. Niger. Food J. 2011;29:34–42.

Chukwu O., Shaba I.M. Effects of drying methods on proximate compositions of catfish (Clarias gariepinus) World J. Agric. Sci. 2009;5:114–116.

Shadieva L.A., Romanova E.M., Lyubomirova V.N., Romanov V.V., Shlenkina T.M. Effect of feed composition on the nutritional value of meat of African catfish. BIO Web Conf. 2020;27:00134. doi: 10.1051/bioconf/20202700134. DOI

Effiong M.U., Yaro C.A. Fatty acid composition of fillets of African catfish (Clarias gariepinus) fed with various oil-based diets. Aquac. Stud. 2020;20:29–35. doi: 10.4194/2618-6381-v20_1_04. DOI

Chwastowska-Siwiecka I., Szyrynska N., Pomianowski J.F., Kubiak M.S., Wozniak M., Baryczka M. Quality of meat and selected welfare indicators of African catfish (Clarias gariepinus) depending on gender. Ital. J. Food Sci. 2016;28:391–401.

Sala S., Crenna E., Secchi M., Pant R. Global Normalisation Factors for the Environmental Footprint and Life Cycle Assessment. Publications Office of the European Union; Luxembourg: 2017. [(accessed on 15 September 2025)]. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC109878. DOI

Andreasi Bassi S., Biganzoli F., Ferrara N., Amadei A., Valente A., Sala S., Ardente F. Updated Characterisation and Normalisation Factors for the Environmental Footprint 3.1 Method. Publications Office of the European Union; Luxembourg: 2023. [(accessed on 15 September 2025)]. Available online: https://publications.jrc.ec.europa.eu/repository/handle/JRC130796. DOI

Intergovernmental Panel on Climate Change (IPCC) In: Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change. Masson-Delmotte V., Zhai P., Pirani A., Connors S.L., Péan C., Berger S., Caud N., Chen Y., Goldfarb L., Gomis M.I., et al., editors. Cambridge University Press; Cambridge, UK: New York, NY, USA: 2021. [(accessed on 30 September 2025)]. 2391p. Available online: https://www.ipcc.ch/report/ar6/wg1/downloads/report/IPCC_AR6_WGI_FullReport.pdf.

Alfaro A.T., Biluca F.C., Marquetti C., Tonial I.B., de Souza N.E. African catfish (Clarias gariepinus) skin gelatine: Extraction optimization and physical–chemical properties. Food Res. Int. 2014;65:416–422. doi: 10.1016/j.foodres.2014.05.070. DOI

Sanaei A.V., Mahmoodani F., See S.F., Yusop S.M., Babji A.S. Optimization of gelatin extraction and physico-chemical properties of catfish (Clarias gariepinus) bone gelatine. Int. Food Res. J. 2013;20:423.

Muyonga J.H., Cole C.G.B., Duodu K.G. Extraction and physico-chemical characterisation of Nile perch (Lates niloticus) skin and bone gelatin. Food Hydrocoll. 2004;18:581–592. doi: 10.1016/j.foodhyd.2003.08.009. DOI

Jamilah B., Harvinder K.G. Properties of gelatins from skins of fish—Black tilapia (Oreochromis mossambicus) and Red tilapia (Oreochromis niloticus) Food Chem. 2002;77:81–84. doi: 10.1016/S0308-8146(01)00328-4. DOI

Guðmundsson M. Rheological properties of fish gelatins. J. Food Sci. 2002;67:2172–2176. doi: 10.1111/j.1365-2621.2002.tb09522.x. DOI

Guðmundsson M., Hafsteinsson H. Gelatin from cod skins as affected by chemical treatments. J. Food Sci. 1997;62:37–39. doi: 10.1111/j.1365-2621.1997.tb04363.x. DOI

Ledward D.A. Gelation of gelatin. In: Mitchell F., Ledward D.A., editors. Functional Properties of Food Macromolecules. Elsevier Applied Science; London, UK: 1986. pp. 171–201.

Gómez-Guillén M.C., Turnay J., Fernández-Dıaz M.D., Ulmo N., Lizarbe M.A., Montero P. Structural and physical properties of gelatin extracted from different marine species: A comparative study. Food Hydrocoll. 2002;16:25–34. doi: 10.1016/S0268-005X(01)00035-2. DOI

Wu J., Xiao J., Zhu M., Yang H., Liu J., Liu Y. Study of physicochemical and gelation properties of fish gelatin from different sources. Appl. Sci. 2023;13:5337. doi: 10.3390/app13095337. DOI

Gilsenan P.M., Ross-Murphy S.B. Rheological characterisation of gelatins from mammalian and marine sources. Food Hydrocoll. 2000;14:191–195. doi: 10.1016/S0268-005X(99)00050-8. DOI

Ibhadon S., Abdulsalami M.S., Emere M.C., Yilwa V. Comparative study of proximate, fatty and amino acids composition of wild and farm-raised African catfish (Clarias gariepinus) in Kaduna, Nigeria. Pak. J. Nutr. 2015;14:56–61. doi: 10.3923/pjn.2015.56.61. DOI

Sathivel S., Prinyawiwatkul W., King J.M., Grimm C.C., Lloyd S. Oil production from catfish viscera. J. Am. Oil Chem. Soc. 2003;80:377–382. doi: 10.1007/s11746-003-0707-z. DOI

Horrocks L.A., Yeo Y.K. Health benefits of docosahexaenoic acid (DHA) Pharmacol. Res. 1999;40:211–225. doi: 10.1006/phrs.1999.0495. PubMed DOI

Santigosa E., Olsen R.E., Madaro A., Søfteland L., Carr I. The impact of varying EPA:DHA ratio on Atlantic salmon health and welfare. Aquaculture. 2023;576:739868. doi: 10.1016/j.aquaculture.2023.739868. DOI

Piccinin E., Cariello M., De Santis S., Ducheix S., Sabbà C., Ntambi J.M., Moschetta A. Role of oleic acid in the gut-liver axis: From diet to the regulation of its synthesis via Stearoyl-CoA Desaturase 1 (SCD1) Nutrients. 2019;11:2283. doi: 10.3390/nu11102283. PubMed DOI PMC

Hu W., Fitzgerald M., Topp B., Alam M., O’Hare T.J. A review of biological functions, health benefits, and possible de novo biosynthetic pathway of palmitoleic acid in macadamia nuts. J. Funct. Foods. 2019;62:103520. doi: 10.1016/j.jff.2019.103520. DOI

Gilbraith W.E., Carter J.C., Adams K., Sota-Uba I., Lavine B.K., Booksh K.S., Ottaway J.M. Classification and peroxide value prediction of naturally aged edible oils using Raman and Infrared Spectral Analysis. Appl. Spectrosc. Pract. 2025;3:27551857251340426. doi: 10.1177/27551857251340426. DOI

Gotoh N., Wada S. The importance of peroxide value in assessing food quality and food safety. J. Am. Oil Chem. Soc. 2006;83:473–474. doi: 10.1007/s11746-006-1229-4. DOI

Adetuyi O.O., Aladekoye G., Akinbobola A.P. Comparative study of proximate composition of oil extracted from African Catfish (Clarias gariepinus) viscera and red palm oil; Proceedings of the Fisheries Society of Nigeria Annual Conference; Lagos, Nigeria. 25–29 November 2013.

Ningrum K.P., Rohman A., Martien R. Physicochemical characterization and fatty acid profiles of catfish oil (Clarias gariepinus) J. Food Pharm. Sci. 2023;11:860–866. doi: 10.22146/jfps.7418. DOI

Sathivel S., Yin H., Prinyawiwatkul W., King J.M. Comparisons of chemical and physical properties of catfish oils prepared from different extracting processes. J. Food Sci. 2009;74:E70–E76. doi: 10.1111/j.1750-3841.2009.01050.x. PubMed DOI

Famurewa J.A.V., Akise O.G., Ogunbodede T. Effect of storage methods on the nutritional qualities of African Catfish Clarias gariepinus (Burchell, 1822) Afr. J. Food Sci. 2017;11:223–233.

Ming C.S. Catfish Oil: The present and future references on past study. J. Fish. Livest. Prod. 2023;11:417.

Gál R., Mokrejš P., Pavlačková J., Janáčová D. Cyprinus carpio skeleton byproduct as a source of collagen for gelatin preparation. Int. J. Mol. Sci. 2022;23:3164. doi: 10.3390/ijms23063164. PubMed DOI PMC

Animal and Vegetable Fats and Oils—Determination of Water Content—Karl Fischer Method (Pyridine Free) ISO; Brussels, Belgium: 2017.

Animal and Vegetable Fats and Oils—Determination of Ash. ISO; Brussels, Belgium: 2008.

Meat and Meat Products—Determination of Total Fat Content. ISO; Geneva, Switzerland: 1973.

Animal Feeding Stuffs—Determination of Nitrogen Content and Calculation of Crude Protein Content—Part 1: Kjeldahl Method. ISO; Geneva, Switzerland: 2005.

Environmental Management—Life Cycle Assessment—Principles and Framework. ISO; Geneva, Switzerland: 2006.

Environmental Management—Life Cycle Assessment—Requirements and Guidelines. ISO; Geneva, Switzerland: 2006.

European Commission Commission Recommendation (EU) 2021/2279 of 15 December 2021 on the Use of the Environmental Footprint Methods to Measure and Communicate the Life Cycle Environmental Performance of Products and Organisations. [(accessed on 15 September 2025)]; Available online: https://eur-lex.europa.eu/eli/reco/2021/2279/2021-12-30.

Weidema B.P., Bauer C., Hischier R., Mutel C., Nemecek T., Reinhard J., Vadenbo C.O., Wernet G. Overview and Methodology. Data Quality Guideline for the Ecoinvent Database Version 3. The Ecoinvent Centre; St. Gallen, Switzerland: 2013. Ecoinvent Report 1(v3)

Wernet G., Bauer C., Steubing B., Reinhard J., Moreno-Ruiz E., Weidema B. The Ecoinvent Database Version 3 (Part I): Overview and Methodology. Int. J. Life Cycle Assess. 2016;21:1218–1230. doi: 10.1007/s11367-016-1087-8. DOI

Official Procedure of the Gelatin Manufacturers Institute of America, Inc. Standard Testing Methods for Edible Gelatin. [(accessed on 20 July 2024)]. Available online: http://www.gelatin-gmia.com/uploads/1/1/8/4/118450438/gmia_official_methods_2019.pdf.

Kubisova M., Pata V., Sykorova L., Hylova L., Suba O. Multi-parameter surface-quality analysis. Mater. Tehnol. 2018;52:23–26. doi: 10.17222/mit.2017.095. DOI

Chen T., Song Z., Liu H., Zhou C., Hong P., Deng C. Physicochemical properties of gelatin produced from Nile tilapia skin using chemical and fermentation pretreatments. Food Biosci. 2022;47:101650. doi: 10.1016/j.fbio.2022.101650. DOI

Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 1: Guidelines on Modern Gas Chromatography of Fatty Acid Methyl Esters. ISO; Geneva, Switzerland: 2014.

Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 2: Preparation of Methyl Esters of Fatty Acids. ISO; Geneva, Switzerland: 2017.

Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 4: Determination by Capillary Gas Chromatography. ISO; Geneva, Switzerland: 2015.

Animal and Vegetable Fats and Oils—Gas Chromatography of Fatty Acid Methyl Esters—Part 3: Preparation of Methyl Esters Using Sodium Methoxide. ISO; Geneva, Switzerland: 2016.

Animal and Vegetable Fats and Oils—Determination of Peroxide Value—Iodometric (Visual) Endpoint Determination. ISO; Geneva, Switzerland: 2017.

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...