Increase in testosterone and cortisol one week after repeated exercise in a cold environment

. 2025 ; 16 () : 1731242. [epub] 20260113

Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41608747

INTRODUCTION: Effects of cold exposure on human physiology are mainly studied after exercise. Therefore, this study aims to investigate the effects of gradually increasing cold exposure and physical exercise on steroid levels, body composition, and other biochemical markers in healthy male athletes immediately after 5-day exercise in cold and after 7 days of recovery. METHODS: Healthy male athletes (n = 12, aged 20.5 ± 1 year, height 181 ± 7.7 cm) were exposed to 5 days of outdoor physical training (2 °C-3 °C) with increasing intensity of exercise and cold exposure. Venous blood was collected, and body bioelectrical impedance measured before and after the 5-day experiment, and after 7-day recovery. Circulating levels of testosterone, cortisol, androstenedione, dehydroepiandrosterone sulphate, 17-hydroxyprogesterone, calcifediol, interleukin-6, C-reactive protein, and erythrocyte superoxide dismutase activity were analysed. RESULTS: Our data show a delayed effect of exercise in cold after 7 days of recovery in the total plasma levels of testosterone (56% increase vs. baseline) and cortisol (54% increase vs. baseline), with no difference immediately after physical training in cold. Bioelectrical impedance analysis showed a decrease in waist-to-hip ratio after the experiment, which normalised after 7 days. No significant changes were observed in Interleukin-6, C-reactive protein, or superoxide dismutase levels. CONCLUSION: A 5-day period of daily exercise in a cold environment showed no immediate effects, but a potential to elicit adaptive changes delayed for up to 7 days, leading to a significant increase in steroid hormones, without changing the testosterone/cortisol ratio.

Zobrazit více v PubMed

Anderson T., Lane A. R., Hackney A. C. (2016). Cortisol and testosterone dynamics following exhaustive endurance exercise. Eur. J. Appl. Physiol. 116, 1503–1509. 10.1007/s00421-016-3406-y PubMed DOI

Barbagallo M., Veronese N., Di Prazza A., Pollicino F., Carruba L., La Carrubba A., et al. (2022). Effect of calcifediol on physical performance and muscle strength parameters: a systematic review and meta-analysis. Nutrients 14, 1860. 10.3390/nu14091860 PubMed DOI PMC

Bičíková M., Máčová L., Hill M. (2022). Vitamin D as a possible COVID-19 prevention strategy. Int. J. Mol. Sci. 23, 10532. 10.3390/ijms231810532 PubMed DOI PMC

Daryabor G., Gholijani N., Kahmini F. R. (2023). A review of the critical role of vitamin D axis on the immune system. Exp. Mol. Pathol. 132–133, 104866. 10.1016/j.yexmp.2023.104866 PubMed DOI

Dehennin L., Bonnaire Y., Plou P. (2001). Human nutritional supplements in the horse. Dehydroepiandrosterone versus androstenedione: comparative effects on the androgen profile and consequences for doping analysis. J. Anal. Toxicol. 25, 685–690. 10.1093/jat/25.8.685 PubMed DOI

Dzik K. P., Grzywacz T., Łuszczyk M., Kujach S., Flis D. J., Kaczor J. J. (2022). Single bout of exercise triggers the increase of vitamin D blood concentration in adolescent trained boys: a pilot study. Sci. Rep. 12, 1825. 10.1038/s41598-022-05783-x PubMed DOI PMC

Estrada M., Espinosa A., Müller M., Jaimovich E. (2003). Testosterone stimulates intracellular calcium release and mitogen-activated protein kinases Via a G protein-coupled receptor in skeletal muscle cells. Endocrinology 144, 3586–3597. 10.1210/en.2002-0164 PubMed DOI

Farag H. A. M., Hosseinzadeh-Attar M. J., Muhammad B. A., Esmaillzadeh A., Hamid el Bilbeisi A. (2019). Effects of vitamin D supplementation along with endurance physical activity on lipid profile in metabolic syndrome patients: a randomized controlled trial. Diabetes and Metabolic Syndrome Clin. Res. and Rev. 13, 1093–1098. 10.1016/j.dsx.2019.01.029 PubMed DOI

Gagnon D. D., Gagnon S. S., Rintamäki H., Törmäkangas T., Puukka K., Herzig K. H., et al. (2014). The effects of cold exposure on leukocytes, hormones and cytokines during acute exercise in humans. PLoS One 9, e110774. 10.1371/journal.pone.0110774 PubMed DOI PMC

Gibas-Dorna M., Chęcińska Z., Korek E., Kupsz J., Sowińska A., Krauss H. (2016). Cold water swimming beneficially modulates insulin sensitivity in middle-aged individuals. J. Aging Phys. Act. 24, 547–554. 10.1123/japa.2015-0222 PubMed DOI

Gil Á., Plaza-Diaz J., Mesa M. D. (2018). Vitamin D: classic and novel actions. Ann. Nutr. Metab. 72, 87–95. 10.1159/000486536 PubMed DOI

Gkika D., Lolignier S., Grolez G. P., Bavencoffe A., Shapovalov G., Gordienko D., et al. (2020). Testosterone-androgen receptor: the steroid link inhibiting TRPM8-mediated cold sensitivity. FASEB J. 34, 7483–7499. 10.1096/fj.201902270R PubMed DOI

Hackney A. C., Walz E. A. (2013). Hormonal adaptation and the stress of exercise training: the role of glucocorticoids. Trends Sport Sci. 20, 165–171. PubMed PMC

Held P., Bird I., Heather N. (2020). Newborn screening for congenital adrenal hyperplasia: review of factors affecting screening accuracy. Int. J. Neonatal Screen 6, 67. 10.3390/ijns6030067 PubMed DOI PMC

Ihsan M., Abbiss C. R., Allan R. (2021). Adaptations to post-exercise cold water immersion: Friend, foe, or futile? Front. Sports Act. Living 3, 714148. 10.3389/fspor.2021.714148 PubMed DOI PMC

Iuchi Y., Okada F., Onuma K., Onoda T., Asao H., Kobayashi M., et al. (2007). Elevated oxidative stress in erythrocytes due to a SOD1 deficiency causes anaemia and triggers autoantibody production. Biochem. J. 402, 219–227. 10.1042/BJ20061386 PubMed DOI PMC

Izawa S., Kim K., Akimoto T., Ahn N., Lee H., Suzuki K. (2009). Effects of cold environment exposure and cold acclimatization on exercise-induced salivary cortisol response. Wilderness Environ. Med. 20, 239–243. 10.1580/07-WEME-OR-123R2.1 PubMed DOI

Klausen T., Breum L., Sørensen H. A., Schifter S., Sonne B. (1993). Plasma levels of parathyroid hormone, vitamin D, calcitonin, and calcium in association with endurance exercise. Calcif. Tissue Int. 52, 205–208. 10.1007/BF00298719 PubMed DOI

Kroboth P. D., Salek F. S., Pittenger A. L., Fabian T. J., Frye R. F. (1999). DHEA and DHEA-S: a review. J. Clin. Pharmacol. 39, 327–348. 10.1177/00912709922007903 PubMed DOI

Maïmoun J., Couret I., Dupuy A. M., Mariano-Goulart D., Micallef J. P., Peruchon E., et al. (2006). The intensity level of physical exercise and the bone metabolism response. Int. J. Sports Med. 27, 105–111. 10.1055/s-2005-837621 PubMed DOI

Marvanova A., Kasik P., Elsnicova B., Tibenska V., Galatik F., Hornikova D., et al. (2023). Continuous short-term acclimation to moderate cold elicits cardioprotection in rats, and alters β-adrenergic signaling and immune status. Sci. Rep. 13, 18287. 10.1038/s41598-023-44205-4 PubMed DOI PMC

Mauras N., Hayes V., Welch S., Rini A., Helgeson K., Dokler M., et al. (1998). Testosterone deficiency in young men: marked alterations in whole body protein kinetics, strength, and Adiposity1. J. Clin. Endocrinol. Metab. 83, 1886–1892. 10.1210/jcem.83.6.4892 PubMed DOI

McCord J. M., Fridovich I. (1969). Superoxide Dismutase: an enzymic function for erythrocuprein (hemocuprein). J. Biol. Chem. 244, 6049–6055. 10.1016/S0021-9258(18)63504-5 PubMed DOI

McKay B. R., O’Reilly C. E., Phillips S. M., Tarnopolsky M. A., Parise G. (2008). Co-expression of IGF-1 family members with myogenic regulatory factors following acute damaging muscle-lengthening contractions in humans. J. Physiol. 586, 5549–5560. 10.1113/jphysiol.2008.160176 PubMed DOI PMC

Meeusen R., Duclos M., Foster C., Fry A., Gleeson M., Nieman D., et al. (2013). Prevention, diagnosis, and treatment of the overtraining syndrome: joint consensus statement of the european college of sport science and the American college of sports medicine. Med. Sci. Sports Exerc 45, 186–205. 10.1249/MSS.0b013e318279a10a PubMed DOI

Mena P., Maynar M., Gutierrez J. M., Maynar J., Timon J., Campillo J. E. (1991). Erythrocyte free radical scavenger enzymes in bicycle professional racers. Adaptation to training. Int. J. Sports Med. 12, 563–566. 10.1055/s-2007-1024734 PubMed DOI

Mieszkowski J., Niespodziński B., Kochanowicz A., Gmiat A., Prusik K., Prusik K., et al. (2018). The effect of nordic walking training combined with vitamin D supplementation on postural control and muscle strength in elderly people—A randomized controlled trial. Int. J. Environ. Res. Public Health 15, 1951. 10.3390/ijerph15091951 PubMed DOI PMC

Mieszkowski J., Stankiewicz B., Kochanowicz A., Niespodziński B., Kowalik T., Żmijewski M. A., et al. (2020). Ultra-marathon-induced increase in serum levels of vitamin D metabolites: a double-blind randomized controlled trial. Nutrients 12, 3629. 10.3390/nu12123629 PubMed DOI PMC

Mondal S., Hathi D. K., Bhattacharya S., Kalra S. (2025). The testosterone: cortisol ratio - a tool with practical use and research potential in endocrinology. Indian J. Endocrinol. Metab. 29, 510–516. 10.4103/ijem.ijem_85_25 PubMed DOI PMC

Moore E., Fuller J. T., Buckley J. D., Saunders S., Halson S. L., Broatch J. R., et al. (2022). Impact of cold-water immersion compared with passive recovery following a single bout of strenuous exercise on athletic performance in physically active participants: a systematic review with meta-analysis and meta-regression. Sports Med. 52, 1667–1688. 10.1007/s40279-022-01644-9 PubMed DOI PMC

Muthusamy V. R., Kannan S., Sadhaasivam K., Gounder S. S., Davidson C. J., Boeheme C., et al. (2012). Acute exercise stress activates Nrf2/ARE signaling and promotes antioxidant mechanisms in the myocardium. Free Radic. Biol. Med. 52, 366–376. 10.1016/j.freeradbiomed.2011.10.440 PubMed DOI PMC

Nash D., Hughes M. G., Butcher L., Aicheler R., Smith P., Cullen T., et al. (2023). IL-6 signaling in acute exercise and chronic training: potential consequences for health and athletic performance. Scand. J. Med. Sci. Sports 33, 4–19. 10.1111/sms.14241 PubMed DOI PMC

Neubauer O., Sabapathy S., Ashton K. J., Desbrow B., Peake J. M., Lazarus R., et al. (2013). Time course-dependent changes in the transcriptome of human skeletal muscle during recovery from endurance exercise: from inflammation to adaptive remodeling. J. Appl. Physiol. 116, 274–287. 10.1152/japplphysiol.00909.2013 PubMed DOI

Noor R., Mittal S., Iqbal J. (2002). Superoxide dismutase-applications and relevance to human diseases. Med. Sci. Monit., RA210–RA215. Available online at: http://www.MedSciMonit.com/pub/vol_8/no_9/2653.pdf. PubMed

Norman A. W., Mizwicki M. T., Norman D. P. G. (2004). Steroid-hormone rapid actions, membrane receptors and a conformational ensemble model. Nat. Rev. Drug Discov. 3, 27–41. 10.1038/nrd1283 PubMed DOI

Petersen A. C., Fyfe J. J. (2021). Post-exercise cold water immersion effects on physiological adaptations to resistance training and the underlying mechanisms in skeletal muscle: a narrative review. Front. Sports Act. Living 3, 660291. 10.3389/fspor.2021.660291 PubMed DOI PMC

Ptaszek B., Podsiadło S., Czerwińska-Ledwig O., Teległów A. (2025). Whole-body cryotherapy affects blood vitamin D levels in people with multiple sclerosis. J. Clin. Med. 14, 3086. 10.3390/jcm14093086 PubMed DOI PMC

Roberts L. A., Raastad T., Markworth J. F., Figueiredo V. C., Egner I. M., Shield A., et al. (2015). Post-exercise cold water immersion attenuates acute anabolic signalling and long-term adaptations in muscle to strength training. J. Physiology 593, 4285–4301. 10.1113/JP270570 PubMed DOI PMC

Ross A. C., Manson J. E., Abrams S. A., Aloia J. F., Brannon P. M., Clinton S. K., et al. (2011). The 2011 report on dietary reference intakes for calcium and vitamin D from the institute of medicine: what Clinicians need to know. J. Clin. Endocrinol. Metab. 96, 53–58. 10.1210/jc.2010-2704 PubMed DOI PMC

Sakamoto K., Wakabayashi I., Yoshimoto S., Masui H., Katsuno S. (1991). Effects of physical exercise and cold stimulation on serum testosterone level in men. Nippon Eiseigaku Zasshi Jpn. J. Hyg. 46, 635–638. 10.1265/jjh.46.635 PubMed DOI

Solter M., Misjak M. (1989). Pituitary-gonadal response to extreme cold exposure in healthy men. Hormone Metabolic Res. 21, 343–344. 10.1055/s-2007-1009232 PubMed DOI

VanBruggen M. D., Hackney A. C., McMurray R. G., Ondrak K. S. (2011). The relationship between serum and salivary cortisol levels in response to different intensities of exercise. Int. J. Sports Physiol. Perform. 6, 396–407. 10.1123/ijspp.6.3.396 PubMed DOI

West D. W. D., Phillips S. M. (2012). Associations of exercise-induced hormone profiles and gains in strength and hypertrophy in a large cohort after weight training. Eur. J. Appl. Physiol. 112, 2693–2702. 10.1007/s00421-011-2246-z PubMed DOI PMC

Yates J., Deshpande N. (1974). Kinetic studies on the enzymes catalysing the conversion of 17α-hydroxy-progesterone and dehydroepiandrosterone to androstenedione in the human adrenal gland PubMed DOI

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...