Targeting Mycobacterium tuberculosis: The Role of Alkyl Substitution in Pyrazinamide Derivatives

. 2026 Jan 27 ; 11 (3) : 3937-3948. [epub] 20260114

Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/pmid41626510

Tuberculosis (TB) remains a significant global health challenge due to the rapid emergence of drug resistance. Despite substantial progress in anti-TB drug development, effective treatment options are limited. In this study, we report the synthesis and biological evaluation of pyrazinamide (PZA) derivatives with 5-alkyl and 5-alkanamido modifications, designed to enhance antimycobacterial activity by increasing lipophilicity and improving penetration of the lipid-rich mycobacterial cell wall. A positive correlation between the length of the 5-alkyl chain and antimycobacterial activity was observed, with maximal potency achieved with the heptyl substituent (4: 5-heptylpyrazine-2-carboxamide, MIC_M. tuberculosis H37Rv = 3.13 μg/mL). In series C with phenyl substitution on the C-2 carboxamide, different simple substituents were tolerated on the benzene ring (both electron-donating and electron-withdrawing, both lipophilic and hydrophilic), and the length of the alkyl chain was the main determinant of the antimycobacterial activity. Compound 23 (5-hexyl-N-(3-trifluoromethylphenyl)-pyrazine-2-carboxamide) exerted MIC = 3.13 μg/mL and selectivity index (SI, compared to HepG2 cells) >25. Notably, the tested compounds exhibited significant activity against multidrug-resistant (MDR) Mycobacterium tuberculosis strains while maintaining favorable selectivity profiles and low cytotoxicity. In contrast, 5-alkanamido derivatives (series B and D) were devoid of antimycobacterial activity. Mechanistic investigations revealed that unlike PZA, the 5-alkyl pyrazinamide derivatives are not hydrolyzed by mycobacterial pyrazinamidase (PncA), indicating a distinct mode of action. While molecular modeling initially suggested enoyl-ACP reductase (InhA) as a potential target of series C, subsequent experimental validation disproved this hypothesis; thus, the precise mechanism of action remains to be elucidated.

Zobrazit více v PubMed

World Health Organization Global tuberculosis report 2024; World Health Organization: Geneva, 2024.

WHO WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance; World Health Organization: Geneva, 2024.

WHO WHO consolidated guidelines on tuberculosis: module 4: treatment and care; World Health Organization: Geneva, 2025. PubMed

Zhang X., Zhao R., Qi Y., Yan X., Qi G., Peng Q.. The progress of Mycobacterium tuberculosis drug targets. Front. Med. 2024;11:1455715. doi: 10.3389/fmed.2024.1455715. PubMed DOI PMC

Jain M., Vyas R.. Unveiling the silent defenders: mycobacterial stress sensors at the forefront to combat tuberculosis. Crit. Rev. Biotechnol. 2025;45(6):1–19. doi: 10.1080/07388551.2024.2449367. PubMed DOI

Zhang Y., Wade M. M., Scorpio A., Zhang H., Sun Z.. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 2003;52(5):790–795. doi: 10.1093/jac/dkg446. PubMed DOI

Fontes F. L., Rooker S. A., Lynn-Barbe J. K., Lyons M. A., Crans D. C., Crick D. C.. Pyrazinoic acid, the active form of the anti-tuberculosis drug pyrazinamide, and aromatic carboxylic acid analogs are protonophores. Front. Mol. Biosci. 2024;11:1350699. doi: 10.3389/fmolb.2024.1350699. PubMed DOI PMC

Stehr M., Elamin A. A., Singh M.. Pyrazinamide: the importance of uncovering the mechanisms of action in mycobacteria. Expert Rev. Anti-Infect. Ther. 2015;13(5):593–603. doi: 10.1586/14787210.2015.1021784. PubMed DOI

Ngo S. C., Zimhony O., Chung W. J., Sayahi H., Jacobs W. R. Jr, Welch J. T.. Inhibition of isolated Mycobacterium tuberculosis fatty acid synthase I by pyrazinamide analogs. Antimicrob. Agents Chemother. 2007;51(7):2430–2435. doi: 10.1128/AAC.01458-06. PubMed DOI PMC

Sayahi H., Pugliese K. M., Zimhony O., Jacobs W. R. Jr, Shekhtman A., Welch J. T.. Analogs of the antituberculous agent pyrazinamide are competitive inhibitors of NADPH binding to M. tuberculosis fatty acid synthase I. Chem. Biodiversity. 2012;9(11):2582–2596. doi: 10.1002/cbdv.201200291. PubMed DOI

Saw W.-G., Leow C. Y., Harikishore A., Shin J., Cole M. S., Aragaw W. W., Ragunathan P., Hegde P., Aldrich C. C., Dick T.. et al. Structural and Mechanistic Insights into Mycobacterium abscessus Aspartate Decarboxylase PanD and a Pyrazinoic Acid-Derived Inhibitor. ACS Infect. Dis. 2022;8(7):1324–1335. doi: 10.1021/acsinfecdis.2c00133. PubMed DOI PMC

Shi W., Chen J., Feng J., Cui P., Zhang S., Weng X., Zhang W., Zhang Y.. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerging Microbes Infect. 2014;3(8):e58. doi: 10.1038/emi.2014.61. PubMed DOI PMC

Sun Q., Li X., Perez L. M., Shi W., Zhang Y., Sacchettini J. C.. The molecular basis of pyrazinamide activity on Mycobacterium tuberculosis PanD. Nat. Commun. 2020;11(1):339. doi: 10.1038/s41467-019-14238-3. PubMed DOI PMC

Zhou S., Yang S., Huang G.. Design, synthesis and biological activity of pyrazinamide derivatives for anti-Mycobacterium tuberculosis. J. Enzyme Inhib. Med. Chem. 2017;32(1):1183–1186. doi: 10.1080/14756366.2017.1367774. PubMed DOI PMC

Dolezal M., Kesetovic D., Zitko J.. Antimycobacterial evaluation of pyrazinoic acid reversible derivatives. Curr. Pharm. Des. 2011;17(32):3506–3514. doi: 10.2174/138161211798194477. PubMed DOI

Ostrer L., Crooks T. A., Howe M. D., Vo S., Jia Z., Hegde P., Schacht N., Aldrich C. C., Baughn A. D.. Mechanism of the dual action self-potentiating antitubercular drug morphazinamide. PNAS Nexus. 2025;4(8):f242. doi: 10.1093/pnasnexus/pgaf242. PubMed DOI PMC

Abrahams K. A., Besra G. S.. Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Parasitology. 2018;145(2):116–133. doi: 10.1017/S0031182016002377. PubMed DOI PMC

Marrakchi H., Laneelle M.-A., Daffe M.. Mycolic acids: structures, biosynthesis, and beyond. Chem. Biol. 2014;21(1):67–85. doi: 10.1016/j.chembiol.2013.11.011. PubMed DOI

Servusova B., Paterova P., Mandikova J., Kubicek V., Kucera R., Kunes J., Dolezal M., Zitko J.. Alkylamino derivatives of pyrazinamide: synthesis and antimycobacterial evaluation. Bioorg. Med. Chem. Lett. 2014;24(2):450–453. doi: 10.1016/j.bmcl.2013.12.054. PubMed DOI

Servusova-Vanaskova B., Jandourek O., Paterova P., Kordulakova J., Plevakova M., Kubicek V., Kucera R., Garaj V., Naesens L., Kunes J.. et al. Alkylamino derivatives of N-benzylpyrazine-2-carboxamide: synthesis and antimycobacterial evaluation. Med. Chem. Commun. 2015;6(7):1311–1317. doi: 10.1039/C5MD00178A. DOI

Servusova-Vanaskova B., Paterova P., Garaj V., Mandikova J., Kunes J., Naesens L., Jilek P., Dolezal M., Zitko J.. Synthesis and Antimicrobial Evaluation of 6-Alkylamino-N-phenylpyrazine-2-carboxamides. Chem. Biol. Drug Des. 2015;86(4):674–681. doi: 10.1111/cbdd.12536. PubMed DOI

Zitko J., Servusova B., Janoutova A., Paterova P., Mandikova J., Garaj V., Vejsova M., Marek J., Dolezal M.. Synthesis and antimycobacterial evaluation of 5-alkylamino-N-phenylpyrazine-2-carboxamides. Bioorg. Med. Chem. 2015;23(1):174–183. doi: 10.1016/j.bmc.2014.11.014. PubMed DOI

Ambrozkiewicz W., Kucerova-Chlupacova M., Jandourek O., Konecna K., Paterova P., Barta P., Vinsova J., Dolezal M., Zitko J.. 5-Alkylamino-N-phenylpyrazine-2-carboxamides: Design, Preparation, and Antimycobacterial Evaluation. Molecules. 2020;25(7):1561. doi: 10.3390/molecules25071561. PubMed DOI PMC

Namouchi A., Cimino M., Favre-Rochex S., Charles P., Gicquel B.. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: implications for drug discovery. BMC Genomics. 2017;18(1):530. doi: 10.1186/s12864-017-3924-y. PubMed DOI PMC

Rajendran A., Palaniyandi K.. Mutations Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis: A Review and Update. Curr. Microbiol. 2022;79(11):348. doi: 10.1007/s00284-022-03032-y. PubMed DOI

Kučerová-Chlupáčová M., Opletalová V., Jampílek J., Doležel J., Dohnal J., Pour M., Kuneš J., Voříšek V.. New Hydrophobicity Constants of Substituents in Pyrazine Rings Derived from RP-HPLC Study. Collect. Czech. Chem. Commun. 2008;73(1):1–18. doi: 10.1135/cccc20080001. DOI

Opletalova V., Patel A., Boulton M., Dundrova A., Lacinova E., Prevorova M., Appeltauerova M., Coufalova M.. 5-alkyl-2-pyrazinecarboxamides, 5-alkyl-2-pyrazinecarbonitriles and 5-alkyl-2-acetylpyrazines as synthetic intermediates for antiinflammatory agents. Collect. Czech. Chem. Commun. 1996;61(7):1093–1101. doi: 10.1135/cccc19961093. DOI

Zitko J., Servusova B., Paterova P., Mandikova J., Kubicek V., Kucera R., Hrabcova V., Kunes J., Soukup O., Dolezal M.. Synthesis, antimycobacterial activity and in vitro cytotoxicity of 5-chloro-N-phenylpyrazine-2-carboxamides. Molecules. 2013;18(12):14807–14825. doi: 10.3390/molecules181214807. PubMed DOI PMC

Zitko J., Franco F., Paterova P.. Synthesis and anti-infective evaluation of 5-amino-N-phenylpyrazine-2-carboxamides. Čes. slov. farm. 2015;64(1):19–24. doi: 10.36290/csf.2015.004. PubMed DOI

Hegde P. V., Aragaw W. W., Cole M. S., Jachak G., Ragunathan P., Sharma S., Harikishore A., Gruber G., Dick T., Aldrich C. C.. Structure activity relationship of pyrazinoic acid analogs as potential antimycobacterial agents. Bioorg. Med. Chem. 2022;74:117046. doi: 10.1016/j.bmc.2022.117046. PubMed DOI PMC

Vontor T., Palat K., Odlerova Z.. Antituberculotics. XLI. Functional derivatives of 5-alkyl-2-pyrazinecarboxylic acid. Cesk. Farm. 1987;36(6):277–280.

Vontor, T. ; Palat, K. ; Odlerova, Z. . Derivatives of 5-alkyl-2-pyrazinecarboxyl acid CS 241,299 B1, 1984.

Zitko J., Dolezal M.. Enoyl acyl carrier protein reductase inhibitors: an updated patent review (2011 - 2015) Expert Opin. Ther. Pat. 2016;26(9):1079–1094. doi: 10.1080/13543776.2016.1211112. PubMed DOI

Luckner S. R., Liu N., am Ende C. W., Tonge P. J., Kisker C.. A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis. J. Biol. Chem. 2010;285(19):14330–14337. doi: 10.1074/jbc.M109.090373. PubMed DOI PMC

Sink R., Sosic I., Zivec M., Fernandez-Menendez R., Turk S., Pajk S., Alvarez-Gomez D., Lopez-Roman E. M., Gonzales-Cortez C., Rullas-Triconado J.. et al. Design, synthesis, and evaluation of new thiadiazole-based direct inhibitors of enoyl acyl carrier protein reductase (InhA) for the treatment of tuberculosis. J. Med. Chem. 2015;58(2):613–624. doi: 10.1021/jm501029r. PubMed DOI

Meinzen C., Proano A., Gilman R. H., Caviedes L., Coronel J., Zimic M., Sheen P.. A quantitative adaptation of the Wayne test for pyrazinamide resistance. Tuberculosis. 2016;99:41–46. doi: 10.1016/j.tube.2016.03.011. PubMed DOI

Seiner D. R., Hegde S. S., Blanchard J. S.. Kinetics and inhibition of nicotinamidase from Mycobacterium tuberculosis. Biochemistry. 2010;49(44):9613–9619. doi: 10.1021/bi1011157. PubMed DOI PMC

Dolezal M., Zitko J., Kesetovicova D., Kunes J., Svobodova M.. Substituted N-Phenylpyrazine-2-carboxamides: synthesis and antimycobacterial evaluation. Molecules. 2009;14(10):4180–4189. doi: 10.3390/molecules14104180. PubMed DOI PMC

Dolezal M., Zitko J., Osicka Z., Kunes J., Vejsova M., Buchta V., Dohnal J., Jampilek J., Kralova K.. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules. 2010;15(12):8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC

Bouz G., Slechta P., Jand’ourek O., Konecna K., Paterova P., Barta P., Novak M., Kucera R., Dal N.-J. K., Fenaroli F.. et al. Hybridization Approach Toward Novel Antituberculars: Design, Synthesis, and Biological Evaluation of Compounds Combining Pyrazinamide and 4-Aminosalicylic Acid. ACS Infect. Dis. 2023;9(1):79–96. doi: 10.1021/acsinfecdis.2c00433. PubMed DOI

Zhou M., Geng X., Chen J., Wang X., Wang D., Deng J., Zhang Z., Wang W., Zhang X.-E., Wei H.. Rapid colorimetric testing for pyrazinamide susceptibility of M. tuberculosis by a PCR-based in-vitro synthesized pyrazinamidase method. PLoS One. 2011;6(11):e27654. doi: 10.1371/journal.pone.0027654. PubMed DOI PMC

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...