Targeting Mycobacterium tuberculosis: The Role of Alkyl Substitution in Pyrazinamide Derivatives
Status PubMed-not-MEDLINE Jazyk angličtina Země Spojené státy americké Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41626510
PubMed Central
PMC12854518
DOI
10.1021/acsomega.5c07249
Knihovny.cz E-zdroje
- Publikační typ
- časopisecké články MeSH
Tuberculosis (TB) remains a significant global health challenge due to the rapid emergence of drug resistance. Despite substantial progress in anti-TB drug development, effective treatment options are limited. In this study, we report the synthesis and biological evaluation of pyrazinamide (PZA) derivatives with 5-alkyl and 5-alkanamido modifications, designed to enhance antimycobacterial activity by increasing lipophilicity and improving penetration of the lipid-rich mycobacterial cell wall. A positive correlation between the length of the 5-alkyl chain and antimycobacterial activity was observed, with maximal potency achieved with the heptyl substituent (4: 5-heptylpyrazine-2-carboxamide, MIC_M. tuberculosis H37Rv = 3.13 μg/mL). In series C with phenyl substitution on the C-2 carboxamide, different simple substituents were tolerated on the benzene ring (both electron-donating and electron-withdrawing, both lipophilic and hydrophilic), and the length of the alkyl chain was the main determinant of the antimycobacterial activity. Compound 23 (5-hexyl-N-(3-trifluoromethylphenyl)-pyrazine-2-carboxamide) exerted MIC = 3.13 μg/mL and selectivity index (SI, compared to HepG2 cells) >25. Notably, the tested compounds exhibited significant activity against multidrug-resistant (MDR) Mycobacterium tuberculosis strains while maintaining favorable selectivity profiles and low cytotoxicity. In contrast, 5-alkanamido derivatives (series B and D) were devoid of antimycobacterial activity. Mechanistic investigations revealed that unlike PZA, the 5-alkyl pyrazinamide derivatives are not hydrolyzed by mycobacterial pyrazinamidase (PncA), indicating a distinct mode of action. While molecular modeling initially suggested enoyl-ACP reductase (InhA) as a potential target of series C, subsequent experimental validation disproved this hypothesis; thus, the precise mechanism of action remains to be elucidated.
Faculty of Pharmacy University Business Academy Heroja Pinkija 4 Novi Sad 21101 Serbia
Faculty of Science University of Hradec Králové Rokitanského 62 Hradec Králové 500 03 Czech Republic
Zobrazit více v PubMed
World Health Organization Global tuberculosis report 2024; World Health Organization: Geneva, 2024.
WHO WHO bacterial priority pathogens list, 2024: Bacterial pathogens of public health importance to guide research, development and strategies to prevent and control antimicrobial resistance; World Health Organization: Geneva, 2024.
WHO WHO consolidated guidelines on tuberculosis: module 4: treatment and care; World Health Organization: Geneva, 2025. PubMed
Zhang X., Zhao R., Qi Y., Yan X., Qi G., Peng Q.. The progress of Mycobacterium tuberculosis drug targets. Front. Med. 2024;11:1455715. doi: 10.3389/fmed.2024.1455715. PubMed DOI PMC
Jain M., Vyas R.. Unveiling the silent defenders: mycobacterial stress sensors at the forefront to combat tuberculosis. Crit. Rev. Biotechnol. 2025;45(6):1–19. doi: 10.1080/07388551.2024.2449367. PubMed DOI
Zhang Y., Wade M. M., Scorpio A., Zhang H., Sun Z.. Mode of action of pyrazinamide: disruption of Mycobacterium tuberculosis membrane transport and energetics by pyrazinoic acid. J. Antimicrob. Chemother. 2003;52(5):790–795. doi: 10.1093/jac/dkg446. PubMed DOI
Fontes F. L., Rooker S. A., Lynn-Barbe J. K., Lyons M. A., Crans D. C., Crick D. C.. Pyrazinoic acid, the active form of the anti-tuberculosis drug pyrazinamide, and aromatic carboxylic acid analogs are protonophores. Front. Mol. Biosci. 2024;11:1350699. doi: 10.3389/fmolb.2024.1350699. PubMed DOI PMC
Stehr M., Elamin A. A., Singh M.. Pyrazinamide: the importance of uncovering the mechanisms of action in mycobacteria. Expert Rev. Anti-Infect. Ther. 2015;13(5):593–603. doi: 10.1586/14787210.2015.1021784. PubMed DOI
Ngo S. C., Zimhony O., Chung W. J., Sayahi H., Jacobs W. R. Jr, Welch J. T.. Inhibition of isolated Mycobacterium tuberculosis fatty acid synthase I by pyrazinamide analogs. Antimicrob. Agents Chemother. 2007;51(7):2430–2435. doi: 10.1128/AAC.01458-06. PubMed DOI PMC
Sayahi H., Pugliese K. M., Zimhony O., Jacobs W. R. Jr, Shekhtman A., Welch J. T.. Analogs of the antituberculous agent pyrazinamide are competitive inhibitors of NADPH binding to M. tuberculosis fatty acid synthase I. Chem. Biodiversity. 2012;9(11):2582–2596. doi: 10.1002/cbdv.201200291. PubMed DOI
Saw W.-G., Leow C. Y., Harikishore A., Shin J., Cole M. S., Aragaw W. W., Ragunathan P., Hegde P., Aldrich C. C., Dick T.. et al. Structural and Mechanistic Insights into Mycobacterium abscessus Aspartate Decarboxylase PanD and a Pyrazinoic Acid-Derived Inhibitor. ACS Infect. Dis. 2022;8(7):1324–1335. doi: 10.1021/acsinfecdis.2c00133. PubMed DOI PMC
Shi W., Chen J., Feng J., Cui P., Zhang S., Weng X., Zhang W., Zhang Y.. Aspartate decarboxylase (PanD) as a new target of pyrazinamide in Mycobacterium tuberculosis. Emerging Microbes Infect. 2014;3(8):e58. doi: 10.1038/emi.2014.61. PubMed DOI PMC
Sun Q., Li X., Perez L. M., Shi W., Zhang Y., Sacchettini J. C.. The molecular basis of pyrazinamide activity on Mycobacterium tuberculosis PanD. Nat. Commun. 2020;11(1):339. doi: 10.1038/s41467-019-14238-3. PubMed DOI PMC
Zhou S., Yang S., Huang G.. Design, synthesis and biological activity of pyrazinamide derivatives for anti-Mycobacterium tuberculosis. J. Enzyme Inhib. Med. Chem. 2017;32(1):1183–1186. doi: 10.1080/14756366.2017.1367774. PubMed DOI PMC
Dolezal M., Kesetovic D., Zitko J.. Antimycobacterial evaluation of pyrazinoic acid reversible derivatives. Curr. Pharm. Des. 2011;17(32):3506–3514. doi: 10.2174/138161211798194477. PubMed DOI
Ostrer L., Crooks T. A., Howe M. D., Vo S., Jia Z., Hegde P., Schacht N., Aldrich C. C., Baughn A. D.. Mechanism of the dual action self-potentiating antitubercular drug morphazinamide. PNAS Nexus. 2025;4(8):f242. doi: 10.1093/pnasnexus/pgaf242. PubMed DOI PMC
Abrahams K. A., Besra G. S.. Mycobacterial cell wall biosynthesis: a multifaceted antibiotic target. Parasitology. 2018;145(2):116–133. doi: 10.1017/S0031182016002377. PubMed DOI PMC
Marrakchi H., Laneelle M.-A., Daffe M.. Mycolic acids: structures, biosynthesis, and beyond. Chem. Biol. 2014;21(1):67–85. doi: 10.1016/j.chembiol.2013.11.011. PubMed DOI
Servusova B., Paterova P., Mandikova J., Kubicek V., Kucera R., Kunes J., Dolezal M., Zitko J.. Alkylamino derivatives of pyrazinamide: synthesis and antimycobacterial evaluation. Bioorg. Med. Chem. Lett. 2014;24(2):450–453. doi: 10.1016/j.bmcl.2013.12.054. PubMed DOI
Servusova-Vanaskova B., Jandourek O., Paterova P., Kordulakova J., Plevakova M., Kubicek V., Kucera R., Garaj V., Naesens L., Kunes J.. et al. Alkylamino derivatives of N-benzylpyrazine-2-carboxamide: synthesis and antimycobacterial evaluation. Med. Chem. Commun. 2015;6(7):1311–1317. doi: 10.1039/C5MD00178A. DOI
Servusova-Vanaskova B., Paterova P., Garaj V., Mandikova J., Kunes J., Naesens L., Jilek P., Dolezal M., Zitko J.. Synthesis and Antimicrobial Evaluation of 6-Alkylamino-N-phenylpyrazine-2-carboxamides. Chem. Biol. Drug Des. 2015;86(4):674–681. doi: 10.1111/cbdd.12536. PubMed DOI
Zitko J., Servusova B., Janoutova A., Paterova P., Mandikova J., Garaj V., Vejsova M., Marek J., Dolezal M.. Synthesis and antimycobacterial evaluation of 5-alkylamino-N-phenylpyrazine-2-carboxamides. Bioorg. Med. Chem. 2015;23(1):174–183. doi: 10.1016/j.bmc.2014.11.014. PubMed DOI
Ambrozkiewicz W., Kucerova-Chlupacova M., Jandourek O., Konecna K., Paterova P., Barta P., Vinsova J., Dolezal M., Zitko J.. 5-Alkylamino-N-phenylpyrazine-2-carboxamides: Design, Preparation, and Antimycobacterial Evaluation. Molecules. 2020;25(7):1561. doi: 10.3390/molecules25071561. PubMed DOI PMC
Namouchi A., Cimino M., Favre-Rochex S., Charles P., Gicquel B.. Phenotypic and genomic comparison of Mycobacterium aurum and surrogate model species to Mycobacterium tuberculosis: implications for drug discovery. BMC Genomics. 2017;18(1):530. doi: 10.1186/s12864-017-3924-y. PubMed DOI PMC
Rajendran A., Palaniyandi K.. Mutations Associated with Pyrazinamide Resistance in Mycobacterium tuberculosis: A Review and Update. Curr. Microbiol. 2022;79(11):348. doi: 10.1007/s00284-022-03032-y. PubMed DOI
Kučerová-Chlupáčová M., Opletalová V., Jampílek J., Doležel J., Dohnal J., Pour M., Kuneš J., Voříšek V.. New Hydrophobicity Constants of Substituents in Pyrazine Rings Derived from RP-HPLC Study. Collect. Czech. Chem. Commun. 2008;73(1):1–18. doi: 10.1135/cccc20080001. DOI
Opletalova V., Patel A., Boulton M., Dundrova A., Lacinova E., Prevorova M., Appeltauerova M., Coufalova M.. 5-alkyl-2-pyrazinecarboxamides, 5-alkyl-2-pyrazinecarbonitriles and 5-alkyl-2-acetylpyrazines as synthetic intermediates for antiinflammatory agents. Collect. Czech. Chem. Commun. 1996;61(7):1093–1101. doi: 10.1135/cccc19961093. DOI
Zitko J., Servusova B., Paterova P., Mandikova J., Kubicek V., Kucera R., Hrabcova V., Kunes J., Soukup O., Dolezal M.. Synthesis, antimycobacterial activity and in vitro cytotoxicity of 5-chloro-N-phenylpyrazine-2-carboxamides. Molecules. 2013;18(12):14807–14825. doi: 10.3390/molecules181214807. PubMed DOI PMC
Zitko J., Franco F., Paterova P.. Synthesis and anti-infective evaluation of 5-amino-N-phenylpyrazine-2-carboxamides. Čes. slov. farm. 2015;64(1):19–24. doi: 10.36290/csf.2015.004. PubMed DOI
Hegde P. V., Aragaw W. W., Cole M. S., Jachak G., Ragunathan P., Sharma S., Harikishore A., Gruber G., Dick T., Aldrich C. C.. Structure activity relationship of pyrazinoic acid analogs as potential antimycobacterial agents. Bioorg. Med. Chem. 2022;74:117046. doi: 10.1016/j.bmc.2022.117046. PubMed DOI PMC
Vontor T., Palat K., Odlerova Z.. Antituberculotics. XLI. Functional derivatives of 5-alkyl-2-pyrazinecarboxylic acid. Cesk. Farm. 1987;36(6):277–280.
Vontor, T. ; Palat, K. ; Odlerova, Z. . Derivatives of 5-alkyl-2-pyrazinecarboxyl acid CS 241,299 B1, 1984.
Zitko J., Dolezal M.. Enoyl acyl carrier protein reductase inhibitors: an updated patent review (2011 - 2015) Expert Opin. Ther. Pat. 2016;26(9):1079–1094. doi: 10.1080/13543776.2016.1211112. PubMed DOI
Luckner S. R., Liu N., am Ende C. W., Tonge P. J., Kisker C.. A slow, tight binding inhibitor of InhA, the enoyl-acyl carrier protein reductase from Mycobacterium tuberculosis. J. Biol. Chem. 2010;285(19):14330–14337. doi: 10.1074/jbc.M109.090373. PubMed DOI PMC
Sink R., Sosic I., Zivec M., Fernandez-Menendez R., Turk S., Pajk S., Alvarez-Gomez D., Lopez-Roman E. M., Gonzales-Cortez C., Rullas-Triconado J.. et al. Design, synthesis, and evaluation of new thiadiazole-based direct inhibitors of enoyl acyl carrier protein reductase (InhA) for the treatment of tuberculosis. J. Med. Chem. 2015;58(2):613–624. doi: 10.1021/jm501029r. PubMed DOI
Meinzen C., Proano A., Gilman R. H., Caviedes L., Coronel J., Zimic M., Sheen P.. A quantitative adaptation of the Wayne test for pyrazinamide resistance. Tuberculosis. 2016;99:41–46. doi: 10.1016/j.tube.2016.03.011. PubMed DOI
Seiner D. R., Hegde S. S., Blanchard J. S.. Kinetics and inhibition of nicotinamidase from Mycobacterium tuberculosis. Biochemistry. 2010;49(44):9613–9619. doi: 10.1021/bi1011157. PubMed DOI PMC
Dolezal M., Zitko J., Kesetovicova D., Kunes J., Svobodova M.. Substituted N-Phenylpyrazine-2-carboxamides: synthesis and antimycobacterial evaluation. Molecules. 2009;14(10):4180–4189. doi: 10.3390/molecules14104180. PubMed DOI PMC
Dolezal M., Zitko J., Osicka Z., Kunes J., Vejsova M., Buchta V., Dohnal J., Jampilek J., Kralova K.. Synthesis, antimycobacterial, antifungal and photosynthesis-inhibiting activity of chlorinated N-phenylpyrazine-2-carboxamides. Molecules. 2010;15(12):8567–8581. doi: 10.3390/molecules15128567. PubMed DOI PMC
Bouz G., Slechta P., Jand’ourek O., Konecna K., Paterova P., Barta P., Novak M., Kucera R., Dal N.-J. K., Fenaroli F.. et al. Hybridization Approach Toward Novel Antituberculars: Design, Synthesis, and Biological Evaluation of Compounds Combining Pyrazinamide and 4-Aminosalicylic Acid. ACS Infect. Dis. 2023;9(1):79–96. doi: 10.1021/acsinfecdis.2c00433. PubMed DOI
Zhou M., Geng X., Chen J., Wang X., Wang D., Deng J., Zhang Z., Wang W., Zhang X.-E., Wei H.. Rapid colorimetric testing for pyrazinamide susceptibility of M. tuberculosis by a PCR-based in-vitro synthesized pyrazinamidase method. PLoS One. 2011;6(11):e27654. doi: 10.1371/journal.pone.0027654. PubMed DOI PMC