5-Alkylamino-N-phenylpyrazine-2-carboxamides: Design, Preparation, and Antimycobacterial Evaluation
Language English Country Switzerland Media electronic
Document type Journal Article
Grant support
CZ.02.1.01/0.0/0.0/16_019/0000841
Ministerstvo Školství, Mládeže a Tělovýchovy
20-19638Y
Grantová Agentura České Republiky
PubMed
32231166
PubMed Central
PMC7180572
DOI
10.3390/molecules25071561
PII: molecules25071561
Knihovny.cz E-resources
- Keywords
- alkylamino derivatives, antibacterial, antifungal, antimycobacterial, cytotoxicity, pyrazinamide,
- MeSH
- Antitubercular Agents chemical synthesis chemistry isolation & purification pharmacology MeSH
- Humans MeSH
- Microbial Sensitivity Tests MeSH
- Mycobacterium tuberculosis drug effects MeSH
- Pyrazinamide chemistry MeSH
- Pyrazines chemistry MeSH
- Drug Design MeSH
- Drug Development MeSH
- Structure-Activity Relationship MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antitubercular Agents MeSH
- Pyrazinamide MeSH
- Pyrazines MeSH
According to the World Health Organization, tuberculosis is still in the top ten causes of death from a single infectious agent, killing more than 1.7 million people worldwide each year. The rising resistance developed by Mycobacterium tuberculosis against currently used antituberculars is an imperative to develop new compounds with potential antimycobacterial activity. As a part of our continuous research on structural derivatives of the first-line antitubercular pyrazinamide, we have designed, prepared, and assessed the in vitro whole cell growth inhibition activity of forty-two novel 5-alkylamino-N-phenylpyrazine-2-carboxamides with various length of the alkylamino chain (propylamino to octylamino) and various simple substituents on the benzene ring. Final compounds were tested against Mycobacterium tuberculosis H37Ra and four other mycobacterial strains (M. aurum, M. smegmatis, M. kansasii, M. avium) in a modified Microplate Alamar Blue Assay. We identified several candidate molecules with micromolar MIC against M. tuberculosis H37Ra and low in vitro cytotoxicity in HepG2 cell line, for example, N-(4-hydroxyphenyl)-5-(pentylamino)pyrazine-2-carboxamide (3c, MIC = 3.91 µg/mL or 13.02 µM, SI > 38) and 5-(heptylamino)-N-(p-tolyl)pyrazine-2-carboxamide (4e, MIC = 0.78 µg/mL or 2.39 µM, SI > 20). In a complementary screening, we evaluated the in vitro activity against bacterial and fungal strains of clinical importance. We observed no antibacterial activity and sporadic antifungal activity against the Candida genus.
See more in PubMed
Tacconelli E., Carrara E., Savoldi A., Harbarth S., Mendelson M., Monnet D.L., Pulcini C., Kahlmeter G., Kluytmans J., Carmeli Y., et al. Discovery, research, and development of new antibiotics: The WHO priority list of antibiotic-resistant bacteria and tuberculosis. Lancet Infect. Dis. 2018;18:318–327. doi: 10.1016/S1473-3099(17)30753-3. PubMed DOI
Glaziou P., Floyd K., Raviglione M.C. Global Epidemiology of Tuberculosis. Semin. Respir. Crit. Care Med. 2018;39:271–285. doi: 10.1101/cshperspect.a017798. PubMed DOI
World Health Organization . WHO Global Tuberculosis Report 2019. World Health Organization; Geneva, Switzerland: 2019.
Gagneux S. Ecology and evolution of Mycobacterium tuberculosis. Nat. Rev. Microbiol. 2018;16:202–213. doi: 10.1038/nrmicro.2018.8. PubMed DOI
Hutchison J.M., Zhang Y., Waller S. Nontuberculous Mycobacteria Infection: Source and Treatment. Curr. Pulmonol. Rep. 2019;8:151–159. doi: 10.1007/s13665-019-00237-8. DOI
Jeon D. Infection Source and Epidemiology of Nontuberculous Mycobacterial Lung Disease. Tuberc. Respir. Dis. 2019;82:94–101. doi: 10.4046/trd.2018.0026. PubMed DOI PMC
Darwish A.A.E., El Mahalawy I., El Dahdouh S.S.A., Elkholy R.M., El Beshbishy M.I.A. Nontuberculous mycobacterium as a hidden cause of noncystic fibrosis bronchiectasis. Egypt. J. Chest Dis. Tuberc. 2020;69:46–50.
Nath H., Ryoo S. First- and Second-Line Drugs and Drug Resistance. In: Mahboub B., editor. Tuberculosis-Current Issues in Diagnosis and Management. InTech; Rijeka, Croatia: 2013. DOI
Saltini C. Chemotherapy and diagnosis of tuberculosis. Respir. Med. 2006;100:2085–2097. doi: 10.1016/j.rmed.2006.09.015. PubMed DOI
Cynamon M.H., Speirs R.J., Welch J.T. In vitro antimycobacterial activity of 5-chloropyrazinamide. Antimicrob. Agents Chemother. 1998;42:462–463. PubMed PMC
Dolezal M., Zitko J., Jampilek J. Pyrazinecarboxylic Acid Derivatives with Antimycobacterial Activity. In: Cardona P.-J., editor. Understanding Tuberculosis-New Approaches to Fighting Against Drug Resistance. InTech; Rijeka, Croatia: 2012. DOI
Dolezal M., Kesetovic D., Zitko J. Antimycobacterial evaluation of pyrazinoic acid reversible derivatives. Curr. Pharm. Des. 2011;17:3506–3514. doi: 10.2174/138161211798194477. PubMed DOI
Zitko J., Servusova B., Paterova P., Mandikova J., Kubicek V., Kucera R., Hrabcova V., Kunes J., Soukup O., Dolezal M. Synthesis, antimycobacterial activity and in vitro cytotoxicity of 5-chloro-N-phenylpyrazine-2-carboxamides. Molecules. 2013;18:14807–14825. doi: 10.3390/molecules181214807. PubMed DOI PMC
Zitko J., Servusova B., Janoutova A., Paterova P., Mandikova J., Garaj V., Vejsova M., Marek J., Dolezal M. Synthesis and antimycobacterial evaluation of 5-alkylamino-N-phenylpyrazine-2-carboxamides. Bioorg. Med. Chem. 2015;23:174–183. doi: 10.1016/j.bmc.2014.11.014. PubMed DOI
Jena L., Kashikar S., Kumar S., Harinath B.C. Comparative proteomic analysis of Mycobacterium tuberculosis strain H37Rv versus H37Ra. Int. J. Mycobacteriol. 2013;2:220–226. doi: 10.1016/j.ijmyco.2013.10.004. PubMed DOI
Heinrichs M., May R., Heider F., Reimers T.B., Sy S., Peloquin C., Derendorf H. Mycobacterium tuberculosis Strains H37ra and H37rv have equivalent minimum inhibitory concentrations to most antituberculosis drugs. Int. J. Mycobacteriol. 2018;7:156–161. doi: 10.4103/ijmy.ijmy_33_18. PubMed DOI
Sood S., Yadav A., Shrivastava R. Mycobacterium aurum is Unable to Survive Mycobacterium tuberculosis Latency Associated Stress Conditions: Implications as Non-suitable Model Organism. Indian J. Microbiol. 2016;56:198–204. doi: 10.1007/s12088-016-0564-x. PubMed DOI PMC
Servusova B., Vobickova J., Paterova P., Kubicek V., Kunes J., Dolezal M., Zitko J. Synthesis and antimycobacterial evaluation of N-substituted 5-chloropyrazine-2-carboxamides. Bioorg. Med. Chem. Lett. 2013;23:3589–3591. doi: 10.1016/j.bmcl.2013.04.021. PubMed DOI
Joseph T., Varghese H.T., Panicker C.Y., Viswanathan K., Dolezal M., Van Alsenoy C. Spectroscopic (FT-IR, FT-Raman), first order hyperpolarizability, NBO analysis, HOMO and LUMO analysis of N-[(4-(trifluoromethyl)phenyl]pyrazine-2-carboxamide by density functional methods. Arab. J. Chem. 2017;10:S2281–S2294. doi: 10.1016/j.arabjc.2013.08.004. DOI
Holzer W., Eller G.A., Datterl B., Habicht D. Derivatives of pyrazinecarboxylic acid: 1H, 13C and 15N NMR spectroscopic investigations. Magn. Reson. Chem. 2009;47:617–624. doi: 10.1002/mrc.2437. PubMed DOI
Franzblau S.G., Witzig R.S., McLaughlin J.C., Torres P., Madico G., Hernandez A., Degnan M.T., Cook M.B., Quenzer V.K., Ferguson R.M., et al. Rapid, low-technology MIC determination with clinical Mycobacterium tuberculosis isolates by using the microplate Alamar Blue assay. J. Clin. Microbiol. 1998;36:362–366. doi: 10.1128/JCM.36.2.362-366.1998. PubMed DOI PMC
European Committee for Antimicrobial Susceptibility Testing (EUCAST) of the European Society of Clinical Microbiology and Infectious Diseases (ESCMID) Determination of minimum inhibitory concentrations (MICs) of antibacterial agents by broth dilution. Clin. Microbiol. Infect. 2003;9:1–7. doi: 10.1046/j.1469-0691.2003.00790.x. PubMed DOI
Arendrup M.C., Meletiadis J., Mouton J.W., Lagrou K., Hamal P., Guinea J., Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST) Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal agents for Yeasts. [(accessed on 5 March 2020)];2017 EUCAST Definitive Document E.Def 7.3.1. Available online: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_yeasts/
Arendrup M.C., Meletiadis J., Mouton J.W., Lagrou K., Hamal P., Guinea J., Subcommittee on Antifungal Susceptibility Testing (AFST) of the ESCMID European Committee for Antimicrobial Susceptibility Testing (EUCAST) Method for the Determination of Broth Dilution Minimum Inhibitory Concentrations of Antifungal agents for Conidia Forming Moulds. [(accessed on 5 March 2020)];2017 EUCAST Definitive Document E.Def 9.3.1. Available online: http://www.eucast.org/astoffungi/methodsinantifungalsusceptibilitytesting/susceptibility_testing_of_moulds/