BACKGROUND: Despite considerable heritability, previous smaller genome-wide association studies (GWASs) have not identified any robust genetic risk factors for isolated dystonia. OBJECTIVE: The objective of this study was to perform a large-scale GWAS in a well-characterized, multicenter sample of >6000 individuals to identify genetic risk factors for isolated dystonia. METHODS: Array-based GWASs were performed on autosomes for 4303 dystonia participants and 2362 healthy control subjects of European ancestry with subgroup analysis based on age at onset, affected body regions, and a newly developed clinical score. Another 736 individuals were used for validation. RESULTS: This GWAS identified no common genome-wide significant loci that could be replicated despite sufficient power to detect meaningful effects. Power analyses imply that the effects of individual variants are likely very small. CONCLUSIONS: Moderate single-nucleotide polymorphism-based heritability indicates that common variants do not contribute to isolated dystonia in this cohort. Sequence-based GWASs (eg, by whole-genome sequencing) might help to better understand the genetic basis. © 2024 The Author(s). Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society.
- MeSH
- celogenomová asociační studie * MeSH
- dospělí MeSH
- dystonické poruchy genetika MeSH
- dystonie * genetika MeSH
- genetická predispozice k nemoci * genetika MeSH
- jednonukleotidový polymorfismus * genetika MeSH
- lidé středního věku MeSH
- lidé MeSH
- rizikové faktory MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
Epilepsy surgery is the therapy of choice for many patients with drug-resistant focal epilepsy. Recognizing and describing ictal and interictal patterns with intracranial electroencephalography (EEG) recordings is important in order to most efficiently leverage advantages of this technique to accurately delineate the seizure-onset zone before undergoing surgery. In this seminar in epileptology, we address learning objective "1.4.11 Recognize and describe ictal and interictal patterns with intracranial recordings" of the International League against Epilepsy curriculum for epileptologists. We will review principal considerations of the implantation planning, summarize the literature for the most relevant ictal and interictal EEG patterns within and beyond the Berger frequency spectrum, review invasive stimulation for seizure and functional mapping, discuss caveats in the interpretation of intracranial EEG findings, provide an overview on special considerations in children and in subdural grids/strips, and review available quantitative/signal analysis approaches. To be as practically oriented as possible, we will provide a mini atlas of the most frequent EEG patterns, highlight pearls for its not infrequently challenging interpretation, and conclude with two illustrative case examples. This article shall serve as a useful learning resource for trainees in clinical neurophysiology/epileptology by providing a basic understanding on the concepts of invasive intracranial EEG.