Nocardia spp., which belongs to one of the Nocardio-form filamentous bacteria, is usually surface hydrophobic and when overproduced attaches to the surface of bubbles under the action of surfactants, allowing the stable presence of foam on the surface of aeration tanks, leading to the occurrence of sludge-foaming events. Two novel phages, P69 and KYD2, were isolated from the environment, and their hosts were Nocardia transvalensis and Nocardia carnea, respectively. These two phages are Siphophages-like with long tails. An aeration tank pilot plant was constructed in the laboratory to simulate sludge foaming, and these two strains of phage were applied. Compared with the reactor not dosed with phage, the application of phage could reduce the host level in the reactor, resulting in the highest decrease in turbidity by more than 68% and sludge volume index by more than 25%. The time for surface foam disappearance was 9 h earlier than that of the control group (the group with the same concentration of Nocardia carnea but no bacteriophage applied), significantly improving water quality. The phage can effectively inhibit the propagation of Nocardia in the actual sludge-foaming event, control the sludge foaming, and improve the effluent quality. It provides a novel and relatively economical solution for controlling sludge foaming in sewage treatment plants in the future, shows that the phages have potential application value in the prevention and control of Nocardia, and provides another way to control the sludge-foaming event caused by the excessive reproduction of Nocardia in the future.
A novel endophytic fungus producing beta-glucosidase was isolated and characterized from pigeon pea (Cajanus cajan [L.] Millsp.), which has excellent properties in converting ginsenoside Rb1 to ginsenoside Rd in Panax notoginseng. According to the 16S rDNA gene sequence, the G11-7 strain was identified as Fusarium proliferatum, and the accession number KY303906 was confirmed in GenBank. The G11-7 immobilized spores, in which the activity of beta-glucosidase could reach 0.95 U/mL, were co-cultured with P. notoginseng plant material to obtain a continuous beta-glucosidase supply for the biotransformation of ginsenoside Rb1 to Rd. Under the liquid-solid ratio (20:1), initial pH (6.0), and temperature (30 °C) constituents, the maximum ginsenoside Rd yield was obtained as 9.15 ± 0.65 mg/g, which was 3.67-fold higher than that without fungal spore co-culture (2.49 ± 0.98 mg/g). Furthermore, immobilized G11-7 spores showed significant beta-glucosidase producing ability which could be recovered and reused for 6 cycles. Overall, these results suggested that immobilized G11-7 offered a promising and effective approach to enhance the production of ginsenoside Rd for possible nutraceutical and pharmaceutical uses.
Screw loosening is one of the most common clinical problems of dental implants. Research on the influencing factors of screw loosening is very important to prevent screw loosening. The purpose of this in vitro study was to evaluate the influence of liquid contamination on the screw loosening. According to the contamination condition, forty-five abutment screws were divided into three groups (n = 15): no contamination, artificial saliva contamination, and mouthwash contamination. The preload and friction coefficient of the abutment screws were recorded. Then, the reverse torque values (RTVs) and settlement were measured after 3.0 × 105 and 6.0 × 105 cycles. The surface wear of the screws was analyzed. Finally, the stress distribution of the abutment screws was calculated by finite element analysis (FEA). The results showed that fluid contamination reduced the friction coefficient, increased the preload, decrease the settlement, improved resistance to screw loosening, and reduced wear on the thread surface. Appropriate antimicrobial lubrication may improve the anti-loosening performance of abutment screws and prevent excessive wear on the threaded surface.
Tilmicosin (TMS) is widely used to treat bacterial infections in veterinary medicine, but the clinical effect is limited by its poor solubility, bitterness, gastric instability, and intestinal efflux transport. Nanostructured lipid carriers (NLCs) are nowadays considered to be a promising vector of therapeutic drugs for oral administration. In this study, an orthogonal experimental design was applied for optimizing TMS-loaded NLCs (TMS-NLCs). The ratios of emulsifier to mixed lipids, stearic acid to oleic acid, drugs to mixed lipids, and cold water to hot emulsion were selected as the independent variables, while the hydrodynamic diameter (HD), drug loading (DL), and entrapment efficiency (EE) were the chosen responses. The optimized TMS-NLCs had a small HD, high DL, and EE of 276.85 ± 2.62 nm, 9.14 ± 0.04%, and 92.92 ± 0.42%, respectively. In addition, a low polydispersity index (0.231 ± 0.001) and high negative zeta potential (-31.10 ± 0.00 mV) indicated the excellent stability, which was further demonstrated by uniformly dispersed spherical nanoparticles under transmission electron microscopy. TMS-NLCs exhibited a slow and sustained release behavior in both simulated gastric juice and intestinal fluid. Furthermore, MDCK-chAbcg2/Abcb1 cell monolayers were successfully established to evaluate their absorption efficiency and potential mechanism. The results of biodirectional transport showed that TMS-NLCs could enhance the cellular uptake and inhibit the efflux function of drug transporters against TMS in MDCK-chAbcg2/Abcb1 cells. Moreover, the data revealed that TMS-NLCs could enter the cells mainly via the caveolae/lipid raft-mediated endocytosis and partially via macropinocytosis. Furthermore, TMS-NLCs showed the same antibacterial activity as free TMS. Taken together, the optimized NLCs were the promising oral delivery carrier for overcoming oral administration obstacle of TMS.
- Publikační typ
- časopisecké články MeSH
At present, the traditional methods for the screening of Clostridium butyricum are not sufficiently selective and efficient. Therefore, it is necessary to establish a targeted and efficient screening method for the detection of C. butyricum. Bioinformatics was used in this study to find C. butyricum specific genes, and species-specific primers were designed based on the conserved regions of the targeted genes, followed by optimization of the PCR conditions. Methodological evaluation was carried out, and the results were compared with the traditional screening method based on Trypticase Sulfite Neomycin (TSN) selective medium. A high-efficiency PCR screening method, targeting C. butyricum species-specific primers, was established. The method was confirmed to have high specificity and sensitivity towards C. butyricum cut-off CFU 103. Compared with the traditional method, the screening success rate of C. butyricum strains increased from 0.61 to 81.91%. The PCR screening method could quickly and accurately detect C. butyricum in samples and dramatically improve screening efficiency.
Climate is widely recognised as an important determinant of the latitudinal diversity gradient. However, most existing studies make no distinction between direct and indirect effects of climate, which substantially hinders our understanding of how climate constrains biodiversity globally. Using data from 35 large forest plots, we test hypothesised relationships amongst climate, topography, forest structural attributes (stem abundance, tree size variation and stand basal area) and tree species richness to better understand drivers of latitudinal tree diversity patterns. Climate influences tree richness both directly, with more species in warm, moist, aseasonal climates and indirectly, with more species at higher stem abundance. These results imply direct limitation of species diversity by climatic stress and more rapid (co-)evolution and narrower niche partitioning in warm climates. They also support the idea that increased numbers of individuals associated with high primary productivity are partitioned to support a greater number of species.