The following extraction techniques have been used for extracting antioxidants (apigenin, coumarin, esculetin, umbelliferone, bergapten, quercetin, rutin, scopoletin and xanthotoxin) from plant material: supercritical fluid extraction, pressurized liquid extraction, extraction by means of Soxhlet apparatus, ultrasonic extraction in ultrasonic bath, and by means of ultrasonic probe. The analytical method based on HPLC-UV detection for the determination of selected antioxidants was developed. For all extracts the antioxidant capacity based on the reduction of free 2,2-diphenyl-1-picrylhydrazyl radical was also determined. Comparing all results the ultrasonic probe method using 0.75 g of sample extracted by 50 mL of acetonitrile in water (30%, v/v) for 25 min at room temperature and with amplitude at 60% (equal to 90 W) without pulsation was evaluated as the best tool. The most significant indicator demonstrating this statement is the antioxidant capacity expressed as gallic acid equivalent where the ultrasonic probe method showed the best results in 10 of 16 samples. Also the operability of ultrasonic probe extraction method compared to other tested methods is more favorable.
A method employing the direct immersion solid-phase microextraction followed by GC-MS analysis is presented for the determination of essential oils components in herbal tea infusions, i.e. their direct content in the liquid phase. The extraction performances were compared using five different microextraction fibres. Significant parameters affecting sorption process such as sample amount, sorption and desorption time and temperature, stirring speed, pH adjustment and effect of ionic strength were optimised and discussed. By optimising the key parameters, a detection limits (LOD = S/N × 3) for ten target marker compounds were obtained in the range from 5.3 to 48.2 ng/mL with recoveries ranged between 93.03 and 100.50%. Intra-day and inter-day repeatability at three concentration levels were found to be 1.1-15.3 and 7.2-15.5% RSD, respectively. Finally, the optimised procedure enabling a rapid and simple analysis of essential oils was applied for the direct determination of these compounds in ten herbal tea infusions.
A method for focused ultrasonic extraction of nitroglycerin, triphenyl amine and acetyl tributyl citrate presented in double-base propellant samples following by the gas chromatography/mass spectrometry analysis was developed. A face-centered central composite design of the experiments and response surface modeling was used for optimization of the time, amplitude and sample amount. The dichloromethane was used as the extractant solvent. The optimal extraction conditions with respect to the maximum yield of the lowest abundant compound triphenyl amine were found at the 20 min extraction time, 35% amplitude of ultrasonic waves and 2.5 g of the propellant sample. The results obtained under optimal conditions were compared with the results achieved with validated Soxhlet extraction method, which is typically used for isolation and pre-concentration of compounds from the samples of explosives. The extraction yields for acetyl tributyl citrate using both extraction methods were comparable; however, the yield of ultrasonic extraction of nitroglycerin and triphenyl amine was lower than using Soxhlet extraction. The possible sources of different extraction yields are estimated and discussed.
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Headspace solid-phase microextraction (HS-SPME) and solid-phase microextraction coupled with hydrodistillation (HD-SPME) were used for detection and determination of essential oils in dried leaves of Mentha piperita L., Lavandula augustifolia L. and Salvia officinalis L. The results were compared with those obtained using steam distillation, which is a reference method. The extraction time 15 min and the minimal fibre depth 1.4 cm are suitable for a 50/30 ?m polydimethylsiloxane/divinylbenzene/ carboxen fibre. The method was compared with HS-SPME and steam distillation.
A method employing the headspace single-drop microextraction (HS-SDME) is presented for the determination of essential oils in dried herbal leaves. By optimising the key experimental parameters, a linear response for the individual target compounds was obtained in the concentration range from LOQ to 4 mg/mL (r(2) = 0.9912-0.9998), with LODs from 3.3 up to 20.5 microg per 100 g of dried leaves, and the repeatability within the RSD of 2.1-8.9%. The HS-SDME-based procedure, enabling a rapid and simple analysis of essential oils in herbs, was applied to selected real samples (nine essential oils in four different samples) in combination with GC-FID identification and quantification of the target volatiles.
- MeSH
- chromatografie plynová metody MeSH
- financování organizované MeSH
- oleje prchavé analýza MeSH
- teplota MeSH
- Publikační typ
- validační studie MeSH
- MeSH
- chemické techniky analytické metody normy MeSH
- chemie fyzikální metody normy MeSH
- extrakce na pevné fázi metody normy využití MeSH
- finanční podpora výzkumu jako téma MeSH
- financování organizované MeSH
- klinické laboratorní techniky normy využití MeSH
- organické látky chemie izolace a purifikace normy MeSH
- rozpouštědla analýza chemie MeSH