Diffuse pediatric-type high-grade gliomas (pedHGG), H3- and IDH-wildtype, encompass three main DNA-methylation-based subtypes: pedHGG-MYCN, pedHGG-RTK1A/B/C, and pedHGG-RTK2A/B. Since their first description in 2017 tumors of pedHGG-RTK2A/B have not been comprehensively characterized and clinical correlates remain elusive. In a recent series of pedHGG with a Gliomatosis cerebri (GC) growth pattern, an increased incidence of pedHGG-RTK2A/B (n = 18) was observed. We added 14 epigenetically defined pedHGG-RTK2A/B tumors to this GC series and provided centrally reviewed radiological, histological, and molecular characterization. The final cohort of 32 pedHGG-RTK2A/B tumors consisted of 25 pedHGG-RTK2A (78%) and seven pedHGG-RTK2B (22%) cases. The median age was 11.6 years (range, 4-17) with a median overall survival of 16.0 months (range 10.9-28.2). Seven of 11 of the newly added cases with imaging available showed a GC phenotype at diagnosis or follow-up. PedHGG-RTK2B tumors exhibited frequent bithalamic involvement (6/7, 86%). Central neuropathology review confirmed a diffuse glial neoplasm in all tumors with prominent angiocentric features in both subclasses. Most tumors (24/27 with available data, 89%) diffusely expressed EGFR with focal angiocentric enhancement. PedHGG-RTK2A tumors lacked OLIG2 expression, whereas 43% (3/7) of pedHGG-RTK2B expressed this glial transcription factor. ATRX loss occurred in 3/6 pedHGG-RTK2B samples with available data (50%). DNA sequencing (pedHGG-RTK2A: n = 18, pedHGG-RTK2B: n = 5) found EGFR alterations (15/23, 65%; predominantly point mutations) in both subclasses. Mutations in BCOR (14/18, 78%), SETD2 (7/18, 39%), and the hTERT promoter (7/19, 37%) occurred exclusively in pedHGG-RTK2A tumors, while pedHGG-RTK2B tumors were enriched for TP53 alterations (4/5, 80%). In conclusion, pedHGG-RTK2A/B tumors are characterized by highly diffuse-infiltrating growth patterns and specific radiological and histo-molecular features. By comprehensively characterizing methylation-based tumors, the chance to develop specific and effective therapy concepts for these detrimental tumors increases.
- MeSH
- dítě MeSH
- fenotyp MeSH
- gliom * genetika patologie diagnostické zobrazování MeSH
- lidé MeSH
- metylace DNA * MeSH
- mladiství MeSH
- nádory mozku * genetika patologie diagnostické zobrazování MeSH
- neuroepitelové nádory * genetika patologie diagnostické zobrazování MeSH
- předškolní dítě MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: The term gliomatosis cerebri (GC), a radiology-defined highly infiltrating diffuse glioma, has been abandoned since molecular GC-associated features could not be established. METHODS: We conducted a multinational retrospective study of 104 children and adolescents with GC providing comprehensive clinical and (epi-)genetic characterization. RESULTS: Median overall survival (OS) was 15.5 months (interquartile range, 10.9-27.7) with a 2-year survival rate of 28%. Histopathological grading correlated significantly with median OS: CNS WHO grade II: 47.8 months (25.2-55.7); grade III: 15.9 months (11.4-26.3); grade IV: 10.4 months (8.8-14.4). By DNA methylation profiling (n = 49), most tumors were classified as pediatric-type diffuse high-grade glioma (pedHGG), H3-/IDH-wild-type (n = 31/49, 63.3%) with enriched subclasses pedHGG_RTK2 (n = 19), pedHGG_A/B (n = 6), and pedHGG_MYCN (n = 5), but only one pedHGG_RTK1 case. Within the pedHGG, H3-/IDH-wild-type subgroup, recurrent alterations in EGFR (n = 10) and BCOR (n = 9) were identified. Additionally, we observed structural aberrations in chromosome 6 in 16/49 tumors (32.7%) across tumor types. In the pedHGG, H3-/IDH-wild-type subgroup TP53 alterations had a significant negative effect on OS. CONCLUSIONS: Contrary to previous studies, our representative pediatric GC study provides evidence that GC has a strong predilection to arise on the background of specific molecular features (especially pedHGG_RTK2, pedHGG_A/B, EGFR and BCOR mutations, chromosome 6 rearrangements).
- MeSH
- dítě MeSH
- fenotyp MeSH
- gliom * genetika patologie MeSH
- kojenec MeSH
- lidé MeSH
- metylace DNA MeSH
- míra přežití MeSH
- mladiství MeSH
- mutace MeSH
- nádorové biomarkery genetika MeSH
- nádory mozku * genetika patologie MeSH
- následné studie MeSH
- neuroepitelové nádory * patologie genetika MeSH
- předškolní dítě MeSH
- prognóza MeSH
- retrospektivní studie MeSH
- stupeň nádoru MeSH
- Check Tag
- dítě MeSH
- kojenec MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
BACKGROUND: Malignant astrocytic gliomas in children show a remarkable biological and clinical diversity. Small in-frame insertions or missense mutations in the epidermal growth factor receptor gene (EGFR) have recently been identified in a distinct subset of pediatric-type bithalamic gliomas with a unique DNA methylation pattern. METHODS: Here, we investigated an epigenetically homogeneous cohort of malignant gliomas (n = 58) distinct from other subtypes and enriched for pediatric cases and thalamic location, in comparison with this recently identified subtype of pediatric bithalamic gliomas. RESULTS: EGFR gene amplification was detected in 16/58 (27%) tumors, and missense mutations or small in-frame insertions in EGFR were found in 20/30 tumors with available sequencing data (67%; 5 of them co-occurring with EGFR amplification). Additionally, 8 of the 30 tumors (27%) harbored an H3.1 or H3.3 K27M mutation (6 of them with a concomitant EGFR alteration). All tumors tested showed loss of H3K27me3 staining, with evidence of overexpression of the EZH inhibitory protein (EZHIP) in the H3 wildtype cases. Although some tumors indeed showed a bithalamic growth pattern, a significant proportion of tumors occurred in the unilateral thalamus or in other (predominantly midline) locations. CONCLUSIONS: Our findings present a distinct molecular class of pediatric-type malignant gliomas largely overlapping with the recently reported bithalamic gliomas characterized by EGFR alteration, but additionally showing a broader spectrum of EGFR alterations and tumor localization. Global H3K27me3 loss in this group appears to be mediated by either H3 K27 mutation or EZHIP overexpression. EGFR inhibition may represent a potential therapeutic strategy in these highly aggressive gliomas.
Diffuse intrinsic pontine glioma (DIPG) is a rare and deadly childhood malignancy. After 40 years of mostly single-center, often non-randomized trials with variable patient inclusions, there has been no improvement in survival. It is therefore time for international collaboration in DIPG research, to provide new hope for children, parents and medical professionals fighting DIPG. In a first step towards collaboration, in 2011, a network of biologists and clinicians working in the field of DIPG was established within the European Society for Paediatric Oncology (SIOPE) Brain Tumour Group: the SIOPE DIPG Network. By bringing together biomedical professionals and parents as patient representatives, several collaborative DIPG-related projects have been realized. With help from experts in the fields of information technology, and legal advisors, an international, web-based comprehensive database was developed, The SIOPE DIPG Registry and Imaging Repository, to centrally collect data of DIPG patients. As for April 2016, clinical data as well as MR-scans of 694 patients have been entered into the SIOPE DIPG Registry/Imaging Repository. The median progression free survival is 6.0 months (95% Confidence Interval (CI) 5.6-6.4 months) and the median overall survival is 11.0 months (95% CI 10.5-11.5 months). At two and five years post-diagnosis, 10 and 2% of patients are alive, respectively. The establishment of the SIOPE DIPG Network and SIOPE DIPG Registry means a paradigm shift towards collaborative research into DIPG. This is seen as an essential first step towards understanding the disease, improving care and (ultimately) cure for children with DIPG.
- MeSH
- dítě MeSH
- gliom diagnostické zobrazování MeSH
- informační služby * MeSH
- lidé MeSH
- magnetická rezonanční tomografie * MeSH
- mezinárodní spolupráce * MeSH
- mladý dospělý MeSH
- nádory mozkového kmene diagnostické zobrazování MeSH
- počítačové zpracování obrazu MeSH
- pons diagnostické zobrazování MeSH
- předškolní dítě MeSH
- registrace * MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH