Degenerative cervical myelopathy (DCM) is a severe consequence of degenerative cervical spinal cord (CSC) compression. The non-myelopathic stage of compression (NMDC) is highly prevalent and often progresses to disabling DCM. This study aims to disclose markers of progressive neurochemical alterations in NMDC and DCM by utilizing an approach based on state-of-the-art proton magnetic resonance spectroscopy (1H-MRS). Proton-MRS data were prospectively acquired from 73 participants with CSC compression and 47 healthy controls (HCs). The MRS voxel was centered at the C2 level. Compression-affected participants were clinically categorized as NMDC and DCM, radiologically as mild (MC) or severe (SC) compression. CSC volumes and neurochemical concentrations were compared between cohorts (HC vs. NMDC vs. DCM and HC vs. MC vs. SC) with general linear models adjusted for age and height (pFWE < 0.05) and correlated to stenosis severity, electrophysiology, and myelopathy symptoms (p < 0.05). Whereas the ratio of total creatine (tCr) to total N-acetylaspartate (tNAA) increased in NMDC (+11%) and in DCM (+26%) and SC (+21%), myo-inositol/tNAA, glutamate + glutamine/tNAA, and volumes changed only in DCM (+20%, +73%, and -14%) and SC (+12%, +46%, and -8%, respectively) relative to HCs. Both tCr/tNAA and myo-inositol/tNAA correlated with compression severity and volume (-0.376 < r < -0.259). Myo-inositol/tNAA correlated with myelopathy symptoms (r = -0.670), whereas CSC volume did not. Short-echo 1H-MRS provided neurochemical signatures of CSC impairment that reflected compression severity and clinical significance. Whereas volumetry only reflected clinically manifest myelopathy (DCM), MRS detected neurochemical changes already before the onset of myelopathy symptoms.
- MeSH
- dospělí MeSH
- inositol metabolismus MeSH
- komprese míchy metabolismus patologie MeSH
- krční mícha * MeSH
- krční obratle MeSH
- kreatin metabolismus MeSH
- kyselina asparagová analogy a deriváty metabolismus MeSH
- kyselina glutamová metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie * MeSH
- senioři MeSH
- senzitivita a specificita MeSH
- studie případů a kontrol MeSH
- stupeň závažnosti nemoci MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
In the present study, we aimed at determining the metabolic responses of the human visual cortex during the presentation of chromatic and achromatic stimuli, known to preferentially activate two separate clusters of neuronal populations (called "blobs" and "interblobs") with distinct sensitivity to color or luminance features. Since blobs and interblobs have different cytochrome-oxidase (COX) content and micro-vascularization level (i.e., different capacities for glucose oxidation), different functional metabolic responses during chromatic vs. achromatic stimuli may be expected. The stimuli were optimized to evoke a similar load of neuronal activation as measured by the bold oxygenation level dependent (BOLD) contrast. Metabolic responses were assessed using functional 1H MRS at 7 T in 12 subjects. During both chromatic and achromatic stimuli, we observed the typical increases in glutamate and lactate concentration, and decreases in aspartate and glucose concentration, that are indicative of increased glucose oxidation. However, within the detection sensitivity limits, we did not observe any difference between metabolic responses elicited by chromatic and achromatic stimuli. We conclude that the higher energy demands of activated blobs and interblobs are supported by similar increases in oxidative metabolism despite the different capacities of these neuronal populations.
- MeSH
- barva * MeSH
- energetický metabolismus MeSH
- glukosa metabolismus MeSH
- kyselina asparagová metabolismus MeSH
- kyselina glutamová metabolismus MeSH
- kyselina mléčná metabolismus MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie MeSH
- magnetická rezonanční tomografie MeSH
- mozek - chemie fyziologie MeSH
- neurony fyziologie MeSH
- oxidace-redukce MeSH
- respirační komplex IV metabolismus MeSH
- světelná stimulace * MeSH
- zdraví dobrovolníci pro lékařské studie MeSH
- zrakové evokované potenciály MeSH
- zrakové korové centrum metabolismus fyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
PURPOSE: To determine the test-retest reproducibility of neurochemical concentrations obtained with a highly optimized, short-echo, single-voxel proton MR spectroscopy (MRS) pulse sequence at 3T and 7T using state-of-the-art hardware. METHODS: A semi-LASER sequence (echo time = 26-28 ms) was used to acquire spectra from the posterior cingulate and cerebellum at 3T and 7T from six healthy volunteers who were scanned four times weekly on both scanners. Spectra were quantified with LCModel. RESULTS: More neurochemicals were quantified with mean Cramér-Rao lower bounds (CRLBs) ≤20% at 7T than at 3T despite comparable frequency-domain signal-to-noise ratio. Whereas CRLBs were lower at 7T (P < 0.05), between-session coefficients of variance (CVs) were comparable at the two fields with 64 transients. Five metabolites were quantified with between-session CVs ≤5% at both fields. Analysis of subspectra showed that a minimum achievable CV was reached with a lower number of transients at 7T for multiple metabolites and that between-session CVs were lower at 7T than at 3T with fewer than 64 transients. CONCLUSION: State-of-the-art MRS methodology allows excellent reproducibility for many metabolites with 5-min data averaging on clinical 3T hardware. Sensitivity and resolution advantages at 7T are important for weakly represented metabolites, short acquisitions, and small volumes of interest. Magn Reson Med 76:1083-1091, 2016. © 2015 Wiley Periodicals, Inc.
- MeSH
- algoritmy * MeSH
- dospělí MeSH
- interpretace obrazu počítačem metody MeSH
- lidé MeSH
- magnetická rezonanční spektroskopie metody MeSH
- magnetická rezonanční tomografie přístrojové vybavení metody MeSH
- molekulární zobrazování přístrojové vybavení metody MeSH
- mozek anatomie a histologie metabolismus MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- tkáňová distribuce MeSH
- vylepšení obrazu metody MeSH
- zobrazování trojrozměrné metody MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- hodnotící studie MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- srovnávací studie MeSH
- validační studie MeSH
Several laboratories have consistently reported small concentration changes in lactate, glutamate, aspartate, and glucose in the human cortex during prolonged stimuli. However, whether such changes correlate with blood oxygenation level-dependent functional magnetic resonance imaging (BOLD-fMRI) signals have not been determined. The present study aimed at characterizing the relationship between metabolite concentrations and BOLD-fMRI signals during a block-designed paradigm of visual stimulation. Functional magnetic resonance spectroscopy (fMRS) and fMRI data were acquired from 12 volunteers. A short echo-time semi-LASER localization sequence optimized for 7 Tesla was used to achieve full signal-intensity MRS data. The group analysis confirmed that during stimulation lactate and glutamate increased by 0.26 ± 0.06 μmol/g (~30%) and 0.28 ± 0.03 μmol/g (~3%), respectively, while aspartate and glucose decreased by 0.20 ± 0.04 μmol/g (~5%) and 0.19 ± 0.03 μmol/g (~16%), respectively. The single-subject analysis revealed that BOLD-fMRI signals were positively correlated with glutamate and lactate concentration changes. The results show a linear relationship between metabolic and BOLD responses in the presence of strong excitatory sensory inputs, and support the notion that increased functional energy demands are sustained by oxidative metabolism. In addition, BOLD signals were inversely correlated with baseline γ-aminobutyric acid concentration. Finally, we discussed the critical importance of taking into account linewidth effects on metabolite quantification in fMRS paradigms.
- MeSH
- dospělí MeSH
- GABA metabolismus MeSH
- glukosa metabolismus MeSH
- kyselina glutamová metabolismus MeSH
- kyselina mléčná metabolismus MeSH
- kyslík krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- magnetická rezonanční tomografie MeSH
- mladý dospělý MeSH
- světelná stimulace * MeSH
- zrakové korové centrum fyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- Research Support, N.I.H., Extramural MeSH
Hippocampal dysfunction is known to be associated with several neurological and neuropsychiatric disorders such as Alzheimer's disease, epilepsy, schizophrenia and depression; therefore, there has been significant clinical interest in studying hippocampal neurochemistry. However, the hippocampus is a challenging region to study using (1) H MRS, hence the use of MRS for clinical research in this region has been limited. Our goal was therefore to investigate the feasibility of obtaining high-quality hippocampal spectra that allow reliable quantification of a neurochemical profile and to establish inter-session reproducibility of hippocampal MRS, including reproducibility of voxel placement, spectral quality and neurochemical concentrations. Ten healthy volunteers were scanned in two consecutive sessions using a standard clinical 3 T MR scanner. Neurochemical profiles were obtained with a short-echo (T(E) = 28 ms) semi-LASER localization sequence from a relatively small (~4 mL) voxel that covered about 62% of the hippocampal volume as calculated from segmentation of T1 -weighted images. Voxel composition was highly reproducible between sessions, with test-retest coefficients of variation (CVs) of 3.5% and 7.5% for gray and white matter volume fraction, respectively. Excellent signal-to-noise ratio (~54 based on the N-acetylaspartate (NAA) methyl peak in non-apodized spectra) and linewidths (~9 Hz for water) were achieved reproducibly in all subjects. The spectral quality allowed quantification of NAA, total choline, total creatine, myo-inositol and glutamate with high scan-rescan reproducibility (CV ≤ 6%) and quantification precision (Cramér-Rao lower bound, CRLB < 9%). Four other metabolites, including glutathione and glucose, were quantified with scan-rescan CV below 20%. Therefore, the highly optimized, short-echo semi-LASER sequence together with FASTMAP shimming substantially improved the reproducibility and number of quantifiable metabolites relative to prior reports. In addition, the between-session variation in metabolite concentrations, as well as CRLB, was lower than the between-subject variation of the concentrations for most metabolites, indicating that the method has the sensitivity to detect inter-individual differences in the healthy brain.
- MeSH
- algoritmy MeSH
- biopolymery metabolismus MeSH
- dospělí MeSH
- hipokampus anatomie a histologie metabolismus MeSH
- lidé MeSH
- molekulární zobrazování metody MeSH
- protonová magnetická rezonanční spektroskopie metody MeSH
- reprodukovatelnost výsledků MeSH
- senzitivita a specificita MeSH
- studie proveditelnosti MeSH
- tkáňová distribuce MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH