Salt hypertensive Dahl rats are characterized by sympathoexcitation and relative NO deficiency. We tested the hypothesis that the increased blood pressure (BP) response to fasudil in salt hypertensive Dahl rats is due to augmented calcium sensitization in the salt-sensitive strain and/or due to their decreased baroreflex efficiency. BP reduction after acute administration of nifedipine (an L-type voltage-dependent calcium channel blocker) or fasudil (a Rho kinase inhibitor) was studied in conscious intact rats and in rats subjected to acute NO synthase inhibition or combined blockade of the renin-angiotensin system (captopril), sympathetic nervous system (pentolinium), and NO synthase (L-NAME). Intact salt-sensitive (SS) Dahl rats fed a low-salt diet had greater BP responses to nifedipine (-31 ± 6 mmHg) or fasudil (-34 ± 7 mmHg) than salt-resistant (SR) Dahl rats (-16 ± 4 and -17 ± 2 mmHg, respectively), and a high-salt intake augmented the BP response only in SS rats. These BP responses were doubled after acute NO synthase inhibition, indicating that endogenous NO attenuates both calcium entry and calcium sensitization. Additional pentolinium administration, which minimized sympathetic compensation for the drug-induced BP reduction, magnified the BP responses to nifedipine or fasudil in all groups except for salt hypertensive SS rats due to their lower baroreflex efficiency. The BP response to the calcium channel blocker nifedipine can distinguish SS and SR rats even after calcium sensitization inhibition by fasudil, which was not seen when fasudil was administered to nifedipine-pretreated rats. Thus, enhanced calcium entry (potentiated by sympathoexcitation) in salt hypertensive Dahl rats is the abnormality that is essential for their BP increase, which was further augmented by increased calcium sensitization in salt-sensitive Dahl rats.
- MeSH
- hypertenze * farmakoterapie MeSH
- krevní tlak MeSH
- krysa rodu rattus MeSH
- kuchyňská sůl * MeSH
- potkani inbrední Dahl MeSH
- vápník MeSH
- vazokonstrikce MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Activation of nuclear factor-κB (NF-κB) by increased production of reactive oxygen species (ROS) might induce transcription and expression of different antioxidant enzymes and also of nitric oxide synthase (NOS) isoforms. Thus, we aimed at studying the effect of NF-κB inhibition, caused by JSH-23 (4-methyl-N (1)-(3-phenyl-propyl)-benzene-1,2-diamine) injection, on ROS and NO generation in hereditary hypertriglyceridemic (HTG) rats. 12-week-old, male Wistar and HTG rats were treated with JSH-23 (bolus, 10 μmol, i.v.). After one week, blood pressure (BP), superoxide dismutase (SOD) activity, SOD1, endothelial NOS (eNOS), and NF-κB (p65) protein expressions were higher in the heart of HTG rats compared to control rats. On the other hand, NOS activity was decreased. In HTG rats, JSH-23 treatment increased BP and heart conjugated dienes (CD) concentration (measured as the marker of tissue oxidative damage). Concomitantly, SOD activity together with SOD1 expression was decreased, while NOS activity and eNOS protein expression were increased significantly. In conclusion, NF-κB inhibition in HTG rats led to decreased ROS degradation by SOD followed by increased oxidative damage in the heart and BP elevation. In these conditions, increased NO generation may represent rather a counterregulatory mechanism activated by ROS. Nevertheless, this mechanism was not sufficient enough to compensate BP increase in HTG rats.
- MeSH
- exprese genu účinky léků MeSH
- fenylendiaminy farmakologie MeSH
- glutathion analýza MeSH
- hyperlipoproteinemie typ IV patologie veterinární MeSH
- krevní tlak účinky léků MeSH
- krysa rodu rattus MeSH
- myokard metabolismus MeSH
- oxid dusnatý metabolismus MeSH
- oxidační stres účinky léků MeSH
- potkani Wistar MeSH
- reaktivní formy kyslíku metabolismus MeSH
- srdeční komory metabolismus MeSH
- superoxiddismutasa genetika metabolismus MeSH
- synthasa oxidu dusnatého, typ III genetika metabolismus MeSH
- synthasa oxidu dusnatého genetika metabolismus MeSH
- tělesná hmotnost účinky léků MeSH
- transkripční faktor RelA genetika metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Our previous experiments demonstrated that selective endothelin A (ETA) receptor blockade had antihypertensive effects in Ren-2 transgenic rats (TGRs), but the mechanisms responsible for this change of blood pressure (BP) have not been explored yet. METHOD: Four-week-old male heterozygous TGRs and their normotensive controls--Hannover Sprague-Dawley (HanSD) rats--were fed high-salt diet (2% NaCl) and were treated with selective ETA receptor blocker atrasentan (5 mg/kg per day) for 8 weeks. At the end of the study, the contribution of principle vasoactive systems was evaluated by the sequential blockade of the renin-angiotensin system (captopril), sympathetic nervous system (pentolinium) and nitric oxide synthase [N-nitro-L-arginine methyl ester (L-NAME)]. The role of calcium influx through L-type voltage-dependent calcium channels in BP maintenance was evaluated using nifedipine. In a separate group of animals, the efficiency of distinct vasodilator systems--prostanoids (blocked by nonselective cyclooxygenase inhibitor indomethacin) and Ca-activated K channels (inhibited by tetraethylammonium)--was also analyzed. RESULTS: Atrasentan attenuated the development of hypertension in heterozygous TGRs, but had no effects in Hannover Sprague-Dawley rats. Moreover, atrasentan moderately attenuated renin-angiotensin system-dependent vasoconstriction, whereas it had no effect on sympathetic vasoconstriction. The nifedipine-sensitive BP component was markedly decreased by atrasentan treatment. In contrast, vasodilatation mediated by nitric oxide, endogenous prostanoids or Ca-activated K channels was reduced in atrasentan-treated TGRs, indicating the absence of compensatory augmentation of endothelin B receptor-mediated vasodilation in these animals. CONCLUSION: BP-lowering effect of chronic atrasentan treatment in TGRs was mainly caused by reduced Ca influx through L-type voltage-dependent calcium channels due to missing ETA receptor-dependent vasoconstriction and attenuated angiotensin II-dependent vasoconstriction.
- MeSH
- antagonisté endotelinového receptoru A chemie MeSH
- antihypertenziva chemie MeSH
- hypertenze patofyziologie MeSH
- kaptopril chemie MeSH
- krevní tlak fyziologie MeSH
- krmivo pro zvířata MeSH
- krysa rodu rattus MeSH
- kuchyňská sůl farmakologie MeSH
- NG-nitroargininmethylester chemie MeSH
- nifedipin chemie MeSH
- oxid dusnatý metabolismus MeSH
- pentoliniumtartrát chemie MeSH
- potkani Sprague-Dawley MeSH
- potkani transgenní MeSH
- pyrrolidiny terapeutické užití MeSH
- renin-angiotensin systém účinky léků MeSH
- renin genetika MeSH
- sympatický nervový systém patofyziologie MeSH
- synthasa oxidu dusnatého metabolismus MeSH
- vápník chemie metabolismus MeSH
- vápníkové kanály - typ L metabolismus MeSH
- vazodilatace účinky léků MeSH
- vazokonstrikce účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Although Ren-2 transgenic rat (TGR) is defined as a model of angiotensin II-dependent hypertension, we studied whether the renin-angiotensin system (RAS) is really the main contributor to blood pressure (BP) elevation in hetero- and homozygous TGRs. Moreover, we examined whether repeated antisense (AS) therapy against AT(1) receptors would have a similar effect on the BP and the contribution of the principle vasoconstrictor/vasodilator systems to BP regulation in young and adult TGRs. From the age of 30 (young) and 100 (adult) days, rats were injected with AS for 40 days in 10-day intervals. After 10 and 40 days of AS therapy, the basal BP and acute BP responses to the sequential blockade of the RAS, sympathetic nervous (SNS) and nitric oxide systems were determined in conscious rats. The RAS system was the major system maintaining elevated BP in young homozygous animals, whereas there was an increasing contribution of the SNS in heterozygous TGR with age. The AS therapy in the young TGR had a transient BP-lowering effect that was associated with reduced cardiac hypertrophy; the AS therapy was most effective in young homozygous TGR, causing a substantial reduction of angiotensin-dependent vasoconstriction. In heterozygous rats, AS therapy at earlier stages was related to an inhibition of sympathetic vasoconstriction, whereas to RAS inhibition in established hypertension. In conclusion, repeated AS therapy had transient antihypertensive effects exclusively in young TGR. The contribution of the RAS to BP maintenance is highly important only in homozygous TGRs, whereas it is surpassed by SNS in heterozygous TGR.
- MeSH
- antihypertenziva terapeutické užití MeSH
- antisense oligonukleotidy terapeutické užití MeSH
- heterozygot MeSH
- homozygot MeSH
- hypertenze terapie MeSH
- kardiomegalie farmakoterapie patofyziologie MeSH
- krysa rodu rattus MeSH
- modely nemocí na zvířatech MeSH
- oxid dusnatý fyziologie MeSH
- potkani transgenní MeSH
- receptor angiotensinu typ 1 genetika metabolismus MeSH
- renin-angiotensin systém účinky léků fyziologie MeSH
- stárnutí genetika fyziologie MeSH
- sympatický nervový systém účinky léků patofyziologie MeSH
- vazokonstrikce účinky léků fyziologie MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH