Our study presents a novel germline c.1715G>T (p.G572V) mutation in the gene encoding Toll-like receptor 8 (TLR8) causing an autoimmune and autoinflammatory disorder in a family with monozygotic male twins, who suffer from severe autoimmune hemolytic anemia worsening with infections, and autoinflammation presenting as fevers, enteritis, arthritis, and CNS vasculitis. The pathogenicity of the mutation was confirmed by in vitro assays on transfected cell lines and primary cells. The p.G572V mutation causes impaired stability of the TLR8 protein, cross-reactivity to TLR7 ligands and reduced ability of TLR8 to attenuate TLR7 signaling. This imbalance toward TLR7-dependent signaling leads to increased pro-inflammatory responses, such as nuclear factor-κB (NF-κB) activation and production of pro-inflammatory cytokines IL-1β, IL-6, and TNFα. This unique TLR8 mutation with partial TLR8 protein loss and hyperinflammatory phenotype mediated by TLR7 ligands represents a novel inborn error of immunity with childhood-onset and a good response to TLR7 inhibition.
- MeSH
- autoimunitní hemolytická anemie genetika imunologie MeSH
- cytokiny genetika imunologie MeSH
- dvojčata monozygotní MeSH
- HEK293 buňky MeSH
- lidé MeSH
- mutace * MeSH
- posouzení stavu pacienta MeSH
- toll-like receptor 7 genetika imunologie MeSH
- toll-like receptor 8 genetika imunologie MeSH
- zánět genetika imunologie MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- studie na dvojčatech MeSH
Interaction with the DNA minor groove is a significant contributor to specific sequence recognition in selected families of DNA-binding proteins. Based on a statistical analysis of 3D structures of protein-DNA complexes, we propose that distortion of the DNA minor groove resulting from interactions with hydrophobic amino acid residues is a universal element of protein-DNA recognition. We provide evidence to support this by associating each DNA minor groove-binding amino acid residue with the local dimensions of the DNA double helix using a novel algorithm. The widened DNA minor grooves are associated with high GC content. However, some AT-rich sequences contacted by hydrophobic amino acids (e.g., phenylalanine) display extreme values of minor groove width as well. For a number of hydrophobic amino acids, distinct secondary structure preferences could be identified for residues interacting with the widened DNA minor groove. These results hold even after discarding the most populous families of minor groove-binding proteins.
- MeSH
- algoritmy MeSH
- aminokyselinové motivy MeSH
- aminokyseliny chemie MeSH
- Arabidopsis metabolismus MeSH
- DNA vazebné proteiny metabolismus MeSH
- DNA chemie MeSH
- fenylalanin chemie MeSH
- hydrofobní a hydrofilní interakce * MeSH
- konformace nukleové kyseliny MeSH
- kyselina glutamová chemie MeSH
- lidé MeSH
- proteiny chemie MeSH
- Saccharomyces cerevisiae metabolismus MeSH
- sekundární struktura proteinů MeSH
- vazba proteinů MeSH
- vazebná místa MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Summary: Amino acid residues showing above background levels of conservation are often indicative of functionally significant regions within a protein. Understanding how the sequence conservation profile relates in space requires projection onto a protein structure, a potentially time-consuming process. 3DPatch is a web application that streamlines this task by automatically generating multiple sequence alignments (where appropriate) and finding structural homologs, presenting the user with a choice of structures matching their query, annotated with residue conservation scores in a matter of seconds. Availability and implementation: 3DPatch is written in JavaScript and is freely available at http://www.skylign.org/3DPatch/. Mozilla Firefox, Google Chrome, and Safari web browsers are supported. Source code is available under MIT license at https://github.com/davidjakubec/3DPatch. Supplementary information: Supplementary data are available at Bioinformatics online.
- MeSH
- databáze proteinů MeSH
- internetový prohlížeč MeSH
- konformace proteinů * MeSH
- lidé MeSH
- sekvenční seřazení * MeSH
- software * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Domains are distinct units within proteins that typically can fold independently into recognizable three-dimensional structures to facilitate their functions. The structural and functional independence of protein domains is reflected by their apparent modularity in the context of multi-domain proteins. In this work, we examined the coupling of evolution of domain sequences co-occurring within multi-domain proteins to see if it proceeds independently, or in a coordinated manner. We used continuous information theory measures to assess the extent of correlated mutations among domains in multi-domain proteins from organisms across the tree of life. In all multi-domain architectures we examined, domains co-occurring within protein sequences had to some degree undergone concerted evolution. This finding challenges the notion of complete modularity and independence of protein domains, providing new perspective on the evolution of protein sequence and function.
Large biomolecules-proteins and nucleic acids-are composed of building blocks which define their identity, properties and binding capabilities. In order to shed light on the energetic side of interactions of amino acids between themselves and with deoxyribonucleotides, we present the Amino Acid Interaction web server (http://bioinfo.uochb.cas.cz/INTAA/). INTAA offers the calculation of the residue Interaction Energy Matrix for any protein structure (deposited in Protein Data Bank or submitted by the user) and a comprehensive analysis of the interfaces in protein-DNA complexes. The Interaction Energy Matrix web application aims to identify key residues within protein structures which contribute significantly to the stability of the protein. The application provides an interactive user interface enhanced by 3D structure viewer for efficient visualization of pairwise and net interaction energies of individual amino acids, side chains and backbones. The protein-DNA interaction analysis part of the web server allows the user to view the relative abundance of various configurations of amino acid-deoxyribonucleotide pairs found at the protein-DNA interface and the interaction energies corresponding to these configurations calculated using a molecular mechanical force field. The effects of the sugar-phosphate moiety and of the dielectric properties of the solvent on the interaction energies can be studied for the various configurations.
Decades of intensive experimental studies of the recognition of DNA sequences by proteins have provided us with a view of a diverse and complicated world in which few to no features are shared between individual DNA-binding protein families. The originally conceived direct readout of DNA residue sequences by amino acid side chains offers very limited capacity for sequence recognition, while the effects of the dynamic properties of the interacting partners remain difficult to quantify and almost impossible to generalise. In this work we investigated the energetic characteristics of all DNA residue-amino acid side chain combinations in the conformations found at the interaction interface in a very large set of protein-DNA complexes by the means of empirical potential-based calculations. General specificity-defining criteria were derived and utilised to look beyond the binding motifs considered in previous studies. Linking energetic favourability to the observed geometrical preferences, our approach reveals several additional amino acid motifs which can distinguish between individual DNA bases. Our results remained valid in environments with various dielectric properties.
- MeSH
- adenin chemie metabolismus MeSH
- aminokyselinové motivy * MeSH
- aminokyseliny chemie metabolismus MeSH
- cytosin chemie metabolismus MeSH
- databáze proteinů MeSH
- DNA vazebné proteiny chemie genetika metabolismus MeSH
- DNA chemie genetika metabolismus MeSH
- guanin chemie metabolismus MeSH
- konformace nukleové kyseliny MeSH
- krystalografie rentgenová MeSH
- molekulární modely MeSH
- statistika jako téma metody MeSH
- terciární struktura proteinů MeSH
- termodynamika MeSH
- thymin chemie metabolismus MeSH
- vazba proteinů MeSH
- vazebná místa genetika MeSH
- výpočetní biologie metody MeSH
- Publikační typ
- časopisecké články MeSH