- Publikační typ
- tisková chyba MeSH
- Publikační typ
- tisková chyba MeSH
BACKGROUND: Faecal microbiota transplantation (FMT) is the standard treatment for patients with multiple recurrent Clostridioides difficile infection (rCDI). Recently, new commercially developed human microbiota-derived medicinal products have been evaluated and Food and Drug Administration-approved with considerable differences in terms of composition, administration, and targeted populations. OBJECTIVES: To review available data on the different microbiota-derived treatments at the stage of advanced clinical evaluation and research in rCDI in comparison with FMT. SOURCES: Phase II or III trials evaluating a microbiota-derived medicinal product to prevent rCDI. CONTENT: Two commercial microbiota-derived medicinal products are approved by the Food and Drug Administration: Rebyota (RBX2660 Ferring Pharmaceuticals, marketed in the United States) and VOWST (SER-109 -Seres Therapeutics, marketed in the United States), whereas VE303 (Vedanta Biosciences Inc) will be studied in phase III trial. RBX2660 and SER-109 are based on the processing of stools from healthy donors, whereas VE303 consists of a defined bacterial consortium originating from human stools and produced from clonal cell banks. All have proven efficacy to prevent rCDI compared with placebo in patients considered at high risk of recurrence. However, the heterogeneity of the inclusion criteria, and the time between each episode and CDI diagnostics makes direct comparison between trials difficult. The differences regarding the risk of recurrence between the treatment and placebo arms were lower than previously described for FMT (FMT: Δ = 50.5%; RBX2660-phase III: Δ = 13.1%; SER-109-phase III: Δ = 28%; high-dose VE303-phase-II: Δ = 31.7%). All treatments presented a good overall safety profile with mainly mild gastrointestinal symptoms. IMPLICATIONS: Stool-derived products and bacterial consortia need to be clearly distinguished in terms of product characterization and their associated risks with specific long-term post-marketing evaluation similar to registries used for FMT. Their place in the therapeutic strategy for patients with rCDI requires further studies to determine the most appropriate patient population and administration route to prevent rCDI.
- MeSH
- Clostridioides difficile * MeSH
- fekální transplantace MeSH
- klostridiové infekce * mikrobiologie MeSH
- lidé MeSH
- mikrobiota * MeSH
- recidiva MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
BACKGROUND: Multidrug-resistant (MDR) bacteria pose a significant challenge to the treatment of infectious diseases. Of particular concern are members of the Klebsiella pneumoniae species complex (KpSC), which are frequently associated with hospital-acquired infections and have the potential to spread outside hospitals via wastewaters. In this study, we aimed to investigate the occurrence and phylogenetic relatedness of MDR KpSC from patients with urinary tract infections (UTIs), hospital sewage, municipal wastewater treatment plants (mWWTPs) and surface waters and to evaluate the clinical relevance of the KpSC subspecies. METHODS: A total of 372 KpSC isolates resistant to third-generation cephalosporins and/or meropenem were collected from patients (n = 130), hospital sewage (n = 95), inflow (n = 54) and outflow from the mWWTPs (n = 63), river upstream (n = 13) and downstream mWWTPs (n = 17) from three cities in the Czech Republic. The isolates were characterized by antimicrobial susceptibility testing and whole-genome sequencing (Illumina). The presence of antibiotic resistance genes, plasmid replicons and virulence-associated factors was determined. A phylogenetic tree and single nucleotide polymorphism matrix were created to reveal the relatedness between isolates. RESULTS: The presence of MDR KpSC isolates (95%) was identified in all water sources and locations. Most isolates (99.7%) produced extended-spectrum beta-lactamases encoded by blaCTX-M-15. Resistance to carbapenems (5%) was observed mostly in wastewaters, but carbapenemase genes, such as blaGES-51 (n = 10), blaOXA-48 (n = 4), blaNDM-1 (n = 4) and blaKPC-3 (n = 1), were found in isolates from all tested locations and different sources except rivers. Among the 73 different sequence types (STs), phylogenetically related isolates were observed only among the ST307 lineage. Phylogenetic analysis revealed the transmission of this lineage from patients to the mWWTP and from the mWWTP to the adjacent river and the presence of the ST307 clone in the mWWTP over eight months. We confirmed the frequent abundance of K. pneumoniae (K. pneumoniae sensu stricto and K. pneumoniae subsp. ozaenae) in patients suffering from UTIs. K. variicola isolates formed only a minor proportion of UTIs, and K. quasipneumoniae was not found among UTIs isolates; however, these subspecies were frequently observed in hospital sewage communities during the first sampling period. CONCLUSION: This study provides evidence of the transmission and persistence of the ST307 lineage from UTIs isolates via mWWTPs to surface waters. Isolates from UTIs consisted mostly of K. pneumoniae. Other isolates of KpSC were observed in hospital wastewaters, which implies the impact of sources other than UTIs. This study highlights the influence of urban wastewaters on the spread of MDR KpSC to receiving environments.
- MeSH
- antibakteriální látky * farmakologie MeSH
- bakteriální proteiny genetika MeSH
- beta-laktamasy * genetika MeSH
- fylogeneze * MeSH
- infekce bakteriemi rodu Klebsiella * mikrobiologie epidemiologie MeSH
- infekce močového ústrojí mikrobiologie epidemiologie MeSH
- infekce spojené se zdravotní péčí mikrobiologie epidemiologie MeSH
- Klebsiella pneumoniae * účinky léků genetika izolace a purifikace klasifikace MeSH
- lidé MeSH
- mikrobiální testy citlivosti * MeSH
- mnohočetná bakteriální léková rezistence * MeSH
- nemocnice * MeSH
- odpadní voda * mikrobiologie MeSH
- odpadní vody mikrobiologie MeSH
- sekvenování celého genomu MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- MeSH
- antibakteriální látky * terapeutické užití MeSH
- klostridiové infekce * farmakoterapie MeSH
- lidé MeSH
- recidiva MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
Clostridioides difficile is a leading cause of healthcare-associated infections. The main objective was to assess the current landscape of CDI infection prevention and control (IPC) practices. An anonymous survey of IPC practices for CDI was conducted between July 25 and October 31, 2022. Precautions for symptomatic patients were applicable for 75.9% and were discontinued 48 h minimum after the resolution of diarrhea for 40.7% of respondents. Daily cleaning of CDI patients' rooms was reported by 23 (42.6%). There was unexpected heterogeneity in IPC practices regarding the hospital management of CDI.
Methicillin-resistant Staphylococcus aureus (MRSA) is a leading cause of health care-associated infections. Additionally, over the decades, the spread of community-associated (CA-MRSA) clones has become a serious problem. The aim of this study was to gain data on the current epidemiology of MRSA in Slovakia. Between January 2020 and March 2020, single-patient MRSA isolates (invasive and/or colonizing) were collected in Slovakia from hospitalized inpatients (16 hospitals) or outpatients (77 cities). Isolates were characterized via antimicrobial susceptibility testing, spa typing, SCCmec typing, the detection of mecA/mecC, genes coding for Panton-Valentine leukocidin (PVL), and the arcA gene (part of the arginine catabolic mobile element [ACME]). Out of 412 isolates, 167 and 245 originated from hospitalized patients and outpatients, respectively. Inpatients were most likely older (P < 0.001) and carried a strain exhibiting multiple resistance (P = 0.015). Isolates were frequently resistant to erythromycin (n = 320), clindamycin (n = 268), and ciprofloxacin/norfloxacin (n = 261). 55 isolates were resistant to oxacillin/cefoxitin only. By clonal structure, CC5-MRSA-II (n = 106; spa types t003, t014), CC22-MRSA-IV (n = 75; t032), and CC8-MRSA-IV (n = 65; t008) were the most frequent. We identified PVL in 72 isolates (17.48%; 17/412), with the majority belonging to CC8-MRSA-IV (n = 55; arcA+; t008, t622; the USA300 CA-MRSA clone) and CC5-MRSA-IV (n = 13; t311, t323). To the best of our knowledge, this is the first study on the epidemiology of MRSA in Slovakia. The presence of the epidemic HA-MRSA clones CC5-MRSA-II and CC22-MRSA-IV was found, as was, importantly, the emergence of the global epidemic USA300 CA-MRSA clone. The extensive spread of USA300 among inpatients and outpatients across the Slovakian regions warrants further investigation. IMPORTANCE The epidemiology of MRSA is characterized by the rise and fall of epidemic clones. Understanding the spread, as well as the evolution of successful MRSA clones, depends on the knowledge of global MRSA epidemiology. However, basic knowledge about MRSA epidemiology is still fragmented or completely missing in some parts of the world. This is the first study of MRSA epidemiology in Slovakia to identify the presence of the epidemic HA-MRSA clones CC5-MRSA-II and CC22-MRSA-IV and, importantly and unexpectedly, the emergence of the global epidemic USA300 CA-MRSA clone in the Slovakian community and hospitals. So far, USA300 has failed to spread in Europe, and this study documents an extensive spread of this epidemic clone in a European country for the first time.
- MeSH
- infekce spojené se zdravotní péčí * epidemiologie MeSH
- lidé MeSH
- methicilin rezistentní Staphylococcus aureus * genetika MeSH
- mikrobiální testy citlivosti MeSH
- nemocnice MeSH
- stafylokokové infekce * epidemiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Slovenská republika MeSH
INTRODUCTION: Hospitals and wastewater are recognized hot spots for the selection and dissemination of antibiotic-resistant bacteria to the environment, but the total participation of hospitals in the spread of nosocomial pathogens to municipal wastewater treatment plants (WWTPs) and adjacent rivers had not previously been revealed. METHODS: We used a combination of culturing and whole-genome sequencing to explore the transmission routes of Escherichia coli from hospitalized patients suffering from urinary tract infections (UTI) via wastewater to the environment. Samples were collected in two periods in three locations (A, B, and C) and cultured on selective antibiotic-enhanced plates. RESULTS: In total, 408 E. coli isolates were obtained from patients with UTI (n=81), raw hospital sewage (n=73), WWTPs inflow (n=96)/outflow (n=106), and river upstream (n=21)/downstream (n=31) of WWTPs. The majority of the isolates produced extended-spectrum beta-lactamase (ESBL), mainly CTX-M-15, and showed multidrug resistance (MDR) profiles. Seven carbapenemase-producing isolates with GES-5 or OXA-244 were obtained in two locations from wastewater and river samples. Isolates were assigned to 74 different sequence types (ST), with the predominance of ST131 (n=80) found in all sources including rivers. Extraintestinal pathogenic lineages frequently found in hospital sewage (ST10, ST38, and ST69) were also found in river water. Despite generally high genetic diversity, phylogenetic analysis of ST10, ST295, and ST744 showed highly related isolates (SNP 0-18) from different sources, providing the evidence for the transmission of resistant strains through WWTPs to surface waters. DISCUSSION: Results of this study suggest that 1) UTI share a minor participation in hospitals wastewaters; 2) a high diversity of STs and phylogenetic groups in municipal wastewaters derive from the urban influence rather than hospitals; and 3) pathogenic lineages and bacteria with emerging resistance genotypes associated with hospitals spread into surface waters. Our study highlights the contribution of hospital and municipal wastewater to the transmission of ESBL- and carbapenemase-producing E. coli with MDR profiles to the environment.
- MeSH
- antibakteriální látky farmakologie MeSH
- beta-laktamasy genetika MeSH
- Escherichia coli genetika MeSH
- fylogeneze MeSH
- infekce močového ústrojí * mikrobiologie MeSH
- infekce vyvolané Escherichia coli * mikrobiologie MeSH
- lidé MeSH
- mikrobiální testy citlivosti MeSH
- multilokusová sekvenční typizace MeSH
- nemocnice MeSH
- odpadní voda MeSH
- odpadní vody mikrobiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
AIM: To investigate the epidemiology of Clostridioides difficile infection (CDI) in Slovakian hospitals after the emergence of ribotype 176 (027-like) in 2016. METHODS: Between 2018 and 2019, European Centre for Disease Control and Prevention CDI surveillance protocol v2.3 was applied to 14 hospitals, with additional data collected on recent antimicrobial use and the characterization of C. difficile isolates. RESULTS: The mean hospital incidence of CDI was 4.1 cases per 10,000 patient bed-days. One hundred and five (27.6%) in-hospital deaths were reported among the 381 cases. Antimicrobial treatment within the previous 4 weeks was recorded in 90.5% (333/368) of cases. Ribotype (RT)176 was detected in 50% (n=185/370, 14 hospitals) and RT001 was detected in 34.6% (n=128/370,13/14 hospitals) of cases with RT data. Overall, 86% (n=318/370) of isolates were resistant to moxifloxacin by Thr82Ile in GyrA (99.7%). Multi-locus variable tandem repeat analysis showed clonal relatedness of predominant RTs within and between hospitals. Seven of 14 sequenced RT176 isolates and five of 13 RT001 isolates showed between zero and three allelic differences by whole-genome multi-locus sequence typing. The majority of sequenced isolates (24/27) carried the erm(B) gene and 16/27 also carried the aac(6')-aph(2'') gene with the corresponding antimicrobial susceptibility phenotypes. Nine RT176 strains carried the cfr(E)gene and one RT001 strain carried the cfr(C) gene, but without linezolid resistance. CONCLUSIONS: The newly-predominant RT176 and endemic RT001 are driving the epidemiology of CDI in Slovakia. In addition to fluoroquinolones, the use of macrolide-lincosamide-streptogramin B antibiotics can represent another driving force for the spread of these epidemic lineages. In C. difficile, linezolid resistance should be confirmed phenotypically in strains with detected cfr gene(s).
- MeSH
- antibakteriální látky farmakologie terapeutické užití MeSH
- Clostridioides difficile * genetika MeSH
- Clostridioides genetika MeSH
- fluorochinolony farmakologie MeSH
- klostridiové infekce * epidemiologie farmakoterapie MeSH
- lidé MeSH
- linezolid MeSH
- makrolidy MeSH
- mikrobiální testy citlivosti MeSH
- multilokusová sekvenční typizace MeSH
- ribotypizace MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Slovenská republika MeSH
- MeSH
- Clostridioides difficile * MeSH
- fekální transplantace MeSH
- klostridiové infekce * terapie MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- komentáře MeSH