Individuals with subjective cognitive decline (SCD) are at higher risk of incipient Alzheimer's disease (AD). Spatial navigation (SN) impairments in AD dementia and mild cognitive impairment patients have been well-documented; however, studies investigating SN deficits in SCD subjects are still lacking. This study aimed to explore whether basal forebrain (BF) and entorhinal cortex (EC) atrophy contribute to spatial disorientation in the SCD stage. In total, 31 SCD subjects and 24 normal controls were enrolled and administered cognitive scales, a 2-dimensional computerized SN test, and structural magnetic resonance imaging (MRI) scanning. We computed the differences in navigation distance errors and volumes of BF subfields, EC, and hippocampus between the SCD and control groups. The correlations between MRI volumetry and navigation distance errors were also calculated. Compared with the controls, the SCD subjects performed worse in both egocentric and allocentric navigation. The SCD group showed volume reductions in the whole BF (p < 0.05, uncorrected) and the Ch4p subfield (p < 0.05, Bonferroni corrected), but comparable EC and hippocampal volumes with the controls. In the SCD cohort, the allocentric errors were negatively correlated with total BF (r = -0.625, p < 0.001), Ch4p (r = -0.625, p < 0.001), total EC (r = -0.423, p = 0.031), and left EC volumes (r = -0.442, p = 0.024), adjusting for age, gender, years of education, total intracranial volume, and hippocampal volume. This study demonstrates that SN deficits and BF atrophy may be promising indicators for the early detection of incipient AD patients. The reduced BF volume, especially in the Ch4p subfield, may serve as a structural basis for allocentric disorientation in SCD subjects independent of hippocampal atrophy. Our findings may have further implications for the preclinical diagnosis and intervention for potential AD patients.
- Publikační typ
- časopisecké články MeSH
Patients with Alzheimer's disease (AD) related dementia and mild cognitive impairment experience difficulties with spatial navigation (SN). However, SN has rarely been investigated in individuals with subjective cognitive decline (SCD), a preclinical stage with elevated progression rate to symptomatic AD. In this study, 30 SCD subjects and 30 controls underwent cognitive scale (CS) evaluation, a 2D computerized SN test, and resting-state functional magnetic resonance imaging scanning. Two SN brain networks (ego-network and allo-network), each with 10 selected spherical regions, were defined. We calculated the average network functional connectivity (FC) and region-to-region FC within the two networks and evaluated correlations with SN performance. Compared with the controls, the SCD group performed worse in the SN test and showed decreased FC between the right retrosplenial and right prefrontal cortices in the ego-network, and between the right retrosplenial cortex and right hippocampus in the allo-network. The logistic regression model based on SN and FC measures revealed a high area under the curve of .880 in differentiating SCD individuals from controls. These results suggest that SN network disconnection contributes to spatial deficits in SCD, and SN and FC measures could benefit the preclinical detection of subjects with incipient AD dementia.