OBJECTIVE: This study aims to evaluate the performance of the fabian-Predictive-Intelligent-Control-of-Oxygenation (PRICO) system for automated control of the fraction of inspired oxygen (FiO2). DESIGN: Multicentre randomised cross-over study. SETTING: Five neonatal intensive care units experienced with automated control of FiO2 and the fabian ventilator. PATIENTS: 39 infants: median gestational age of 27 weeks (IQR: 26-30), postnatal age 7 days (IQR: 2-17), weight 1120 g (IQR: 915-1588), FiO2 0.32 (IQR: 0.22-0.43) receiving both non-invasive (27) and invasive (12) respiratory support. INTERVENTION: Randomised sequential 24-hour periods of automated and manual FiO2 control. MAIN OUTCOME MEASURES: Proportion (%) of time in normoxaemia (90%-95% with FiO2>0.21 and 90%-100% when FiO2=0.21) was the primary endpoint. Secondary endpoints were severe hypoxaemia (<80%) and severe hyperoxaemia (>98% with FiO2>0.21) and prevalence of episodes ≥60 s at these two SpO2 extremes. RESULTS: During automated control, subjects spent more time in normoxaemia (74%±22% vs 51%±22%, p<0.001) with less time above and below (<90% (9%±8% vs 12%±11%, p<0.001) and >95% with FiO2>0.21 (16%±19% vs 35%±24%) p<0.001). They spent less time in severe hyperoxaemia (1% (0%-3.5%) vs 5% (1%-10%), p<0.001) but exposure to severe hypoxaemia was low in both arms and not different. The differences in prolonged episodes of SpO2 were consistent with the times at extremes. CONCLUSIONS: This study demonstrates the ability of the PRICO automated oxygen control algorithm to improve the maintenance of SpO2 in normoxaemia and to avoid hyperoxaemia without increasing hypoxaemia.
- MeSH
- hyperoxie prevence a kontrola MeSH
- hypoxie MeSH
- jednotky intenzivní péče o novorozence * MeSH
- klinické křížové studie * MeSH
- kyslík krev aplikace a dávkování MeSH
- lidé MeSH
- novorozenec nedonošený MeSH
- novorozenec MeSH
- oxygenoterapie metody škodlivé účinky přístrojové vybavení MeSH
- oxymetrie metody MeSH
- saturace kyslíkem * MeSH
- umělé dýchání škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- pragmatická klinická studie MeSH
- randomizované kontrolované studie MeSH
OBJECTIVE: This randomised study in preterm infants on non-invasive respiratory support investigated the effectiveness of automated oxygen control (A-FiO2) in keeping the oxygen saturation (SpO2) within a target range (TR) during a 28-day period compared with manual titration (M-FiO2). DESIGN: A single-centre randomised control trial. SETTING: A level III neonatal intensive care unit. PATIENTS: Preterm infants (<28 weeks' gestation) on non-invasive respiratory support. INTERVENTIONS: A-FiO2 versus M-FiO2 control. METHODS: Main outcomes were the proportion of time spent and median area of episodes in the TR, hyperoxaemia, hypoxaemia and the trend over 28 days using a linear random intercept model. RESULTS: 23 preterm infants (median gestation 25.7 weeks; birth weight 820 g) were randomised. Compared with M-FiO2, the time spent within TR was higher in the A-FiO2 group (68.7% vs 48.0%, p<0.001). Infants in the A-FiO2 group spent less time in hyperoxaemia (13.8% vs 37.7%, p<0.001), but no difference was found in hypoxaemia. The time-based analyses showed that the A-FiO2 efficacy may differ over time, especially for hypoxaemia. Compared with the M-FiO2 group, the A-FiO2 group had a larger intercept but with an inversed slope for the daily median area below the TR (intercept 70.1 vs 36.3; estimate/day -0.70 vs 0.69, p<0.001). CONCLUSION: A-FiO2 control was superior to manual control in keeping preterm infants on non-invasive respiratory support in a prespecified TR over a period of 28 days. This improvement may come at the expense of increased time below the TR in the first days after initiating A-FiO2 control. TRIAL REGISTRATION NUMBER: NTR6731.
- MeSH
- hypoxie prevence a kontrola MeSH
- klinické křížové studie MeSH
- kojenec MeSH
- kyslík * MeSH
- lidé MeSH
- novorozenec nedonošený * MeSH
- novorozenec MeSH
- porodní hmotnost MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
- randomizované kontrolované studie MeSH
OBJECTIVE: Neonatal exposure to episodic hypoxemia and hyperoxemia is highly relevant to outcomes. Our goal was to investigate the differences in the frequency and duration of extreme low and high SpO2 episodes between automated and manual inspired oxygen control. DESIGN: Post-hoc analysis of a cohort from prospective randomized cross-over studies. SETTING: Seven tertiary care neonatal intensive care units. PATIENTS: Fifty-eight very preterm neonates (32 or less weeks PMA) receiving respiratory support and supplemental oxygen participating in an automated versus manual oxygen control cross-over trial. MAIN MEASURES: Extreme hypoxemia was defined as a SpO2 < 80%, extreme hyperoxemia as a SpO2 > 98%. Episode duration was categorized as < 5 seconds, between 5 to < 30 seconds, 30 to < 60 seconds, 60 to < 120 seconds, and 120 seconds or longer. RESULTS: The infants were of a median postmenstrual age of 29 (28-31) weeks, receiving a median FiO2 of 0.28 (0.25-0.32) with mostly receiving non-invasive respiratory support (83%). While most of the episodes were less than 30 seconds, longer episodes had a marked effect on total time exposure to extremes. The time differences in each of the three longest durations episodes (30, 60, and 120 seconds) were significantly less during automated than during manual control (p < 0.001). Nearly two-third of the reduction of total time spent at the extremes between automated and manual control (3.8 to 2.1% for < 80% SpO2 and 3.0 to 1.6% for > 98% SpO2) was seen in the episodes of at least 60 seconds. CONCLUSIONS: This study shows that the majority of episodes preterm infants spent in SpO2 extremes are of short duration regardless of manual or automated control. However, the infrequent longer episodes not only contribute the most to the total exposure, but also their reduction in frequency to the improvement associated with automated control.
- MeSH
- hypoxie etiologie terapie MeSH
- kojenec MeSH
- kyslík * MeSH
- lidé MeSH
- novorozenec nedonošený * MeSH
- novorozenec MeSH
- oxymetrie MeSH
- prospektivní studie MeSH
- retrospektivní studie MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- novorozenec MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: To investigate the effect of different pulse oximetry (SpO2) target range settings during automated fraction of inspired oxygen control (A-FiO2) on time spent within a clinically set SpO2 alarm range in oxygen-dependent infants on noninvasive respiratory support. STUDY DESIGN: Forty-one preterm infants (gestational age [median] 26 weeks, age [median] 21 days) on FiO2 >0.21 receiving noninvasive respiratory support were subjected to A-FiO2 using 3 SpO2 target ranges (86%-94%, 88%-92%, or 89%-91%) in random order for 24 hours each. Before switching to the next target range, SpO2 was manually controlled for 24 hours (washout period). The primary outcome was the time spent within the clinically set alarm limits of 86%-94%. RESULTS: The percent time within the 86%-94% SpO2 alarm range was similar for all 3 A-FiO2 target ranges (74%). Time spent in hyperoxemia was not significantly different between target ranges. However, the time spent in severe hypoxemia (SpO2 <80%) was significantly reduced during the narrowed target ranges of A-FiO2 (88%-92%; 1.9%, 89%-91%; 1.7%) compared with the wide target range (86%-94%; 3.4%, P < .001). There were no differences between the 88%-92% and 89-91% target range. CONCLUSIONS: Narrowing the target range of A-FiO2 to the desired median ±2% is effective in reducing the time spent in hypoxemia, without increasing the risk of hyperoxemia. TRIAL REGISTRATION: www.trialregister.nl: NTR4368.
- MeSH
- časové faktory MeSH
- jednotky intenzivní péče o novorozence MeSH
- klinické alarmy statistika a číselné údaje MeSH
- klinické křížové studie MeSH
- kyslík krev MeSH
- lidé MeSH
- neinvazivní ventilace metody MeSH
- novorozenec nedonošený MeSH
- novorozenec MeSH
- oxymetrie metody MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- randomizované kontrolované studie MeSH
- Geografické názvy
- Nizozemsko MeSH
OBJECTIVE: To determine the efficacy and safety of automated adjustment of the fraction of inspired oxygen (FiO2) in maintaining arterial oxygen saturation (SpO2) within a higher (91%-95%) and a lower (89%-93%) target range in preterm infants. STUDY DESIGN: Eighty preterm infants (gestational age [median]: 26 weeks, age [median] 18 days) on noninvasive (n = 50) and invasive (n = 30) respiratory support with supplemental oxygen, were first randomized to one of the SpO2 target ranges and then treated with automated FiO2 (A-FiO2) and manual FiO2 (M-FiO2) oxygen control for 24 hours each, in random sequence. RESULTS: The percent time within the target range was higher during A-FiO2 compared with M-FiO2 control. This effect was more pronounced in the lower SpO2 target range (62 ± 17% vs 54 ± 16%, P < .001) than in the higher SpO2 target range (62 ± 17% vs 58 ± 15%, P < .001). The percent time spent below the target or in hypoxemia (SpO2 <80%) was consistently reduced during A-FiO2, independent of the target range. The time spent above the target range or at extreme hyperoxemia (SpO2 >98%) was only reduced during A-FiO2 when targeting the lower SpO2 range (89%-93%). These outcomes did not differ between infants on noninvasive and invasive respiratory support. Manual adjustments were significantly reduced during A-FiO2 control. CONCLUSIONS: A-FiO2 control improved SpO2 targeting across different SpO2 ranges and reduced hypoxemia in preterm infants on noninvasive and invasive respiratory support. TRIAL REGISTRATION: ISRCTN 56626482.
- MeSH
- jednotky intenzivní péče o novorozence MeSH
- klinické křížové studie MeSH
- kyslík krev terapeutické užití MeSH
- lidé MeSH
- novorozenec nedonošený MeSH
- novorozenec MeSH
- oxymetrie metody MeSH
- umělé dýchání metody MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- multicentrická studie MeSH
- randomizované kontrolované studie MeSH
- Geografické názvy
- Evropa MeSH
- Kanada MeSH