Saliva contains possible biomarkers that are associated with dental caries. The present study aimed to analyse differences in the abundance of proteins in the saliva between caries-positive (CP; N = 15) and caries-free (CF; N = 12) males and to compare differences in the abundance of proteins between two saliva sample fractions (supernatant and pellet). We found 14 differently significantly expressed proteins in the CF group when comparing the supernatant fractions of the CP and CF groups, and three proteins in the pellet fractions had significantly higher expression in the CP group. Our results indicate very specific protein compositions of the saliva in relation to dental caries resistance (the saliva of the CP group mainly contained pellet proteins and the saliva of the CF group mainly contained supernatant proteins). This was the first time that the saliva pellet fraction was analysed in relation to the dental caries status. We detected specific calcium-binding proteins that could have decalcified enamel in the saliva pellet of the CP group. We also observed significantly up-regulated immune proteins in the saliva supernatant of the CF group that could play an important role in the caries prevention. The particular protein compositions of the saliva pellet and supernatant in the groups with different susceptibilities to tooth decay is a promising finding for future research.
- MeSH
- lidé MeSH
- náchylnost k zubnímu kazu * MeSH
- proteomika * MeSH
- slinné proteiny a peptidy analýza imunologie metabolismus MeSH
- sliny chemie imunologie metabolismus MeSH
- zubní kaz imunologie metabolismus prevence a kontrola MeSH
- Check Tag
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The dentin-enamel junction (DEJ) is the border where two different mineralized structures - enamel and dentin - meet. The protein-rich DEJ, together with the inner enamel region of mature teeth, is known to exhibit higher fracture toughness and crack growth resistance than bulk phase enamel. However, an explanation for this behavior has been hampered by the lack of compositional information for the DEJ and the adjacent enamel organic matrix (EOM). We studied proteomes of the DEJ and EOM of healthy human molars and compared them with dentin and enamel proteomes from the same teeth. These tissues were cut out of tooth sections by laser capture microdissection, proteins were extracted and cleaved by trypsin, then processed by liquid chromatography coupled to tandem mass spectrometry to analyze the proteome profiles of these tissues. This study identified 46 proteins in DEJ and EOM. The proteins identified have a variety of functions, including calcium ion-binding, formation of extracellular matrix, formation of cytoskeleton, cytoskeletal protein binding, cell adhesion, and transport. Collagens were identified as the most dominant proteins. Tissue-specific proteins, such as ameloblastin and amelogenin, were also detected. Our findings reveal new insight into proteomics of DEJ and EOM, highly mineralized tissues that are obviously difficult to analyze.
- MeSH
- chromatografie kapalinová MeSH
- dentin * MeSH
- lidé MeSH
- mikrodisekce MeSH
- moláry * MeSH
- proteiny metabolismus MeSH
- proteom analýza MeSH
- proteomika metody MeSH
- tandemová hmotnostní spektrometrie MeSH
- zubní sklovina * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Idiopathic pes equinovarus (clubfoot) is a congenital deformity of the feet and lower legs. Clubfoot belongs to a group of fibro-proliferative disorders but its origin remains unknown. Our study aimed to achieve the first complex proteomic comparison of clubfoot contracted tissue of the foot (medial side; n = 16), with non-contracted tissue (lateral side; n = 13). We used label-free mass spectrometry quantification and immunohistochemistry. Seven proteins were observed to be significantly upregulated in the medial side (asporin, collagen type III, V, and VI, versican, tenascin-C, and transforming growth factor beta induced protein) and four in the lateral side (collagen types XII and XIV, fibromodulin, and cartilage intermediate layer protein 2) of the clubfoot. Comparison of control samples from cadavers brought only two different protein concentrations (collagen types I and VI). We also revealed pathological calcification and intracellular positivity of transforming growth factor beta only in the contracted tissue of clubfoot. Most of the 11 differently expressed proteins are strongly related to the extracellular matrix architecture and we assume that they may play specific roles in the pathogenesis of this deformity. These proteins seem to be promising targets for future investigations and treatment of this disease. © 2019 Orthopaedic Research Society. Published by Wiley Periodicals, Inc. J Orthop Res.
- MeSH
- dítě MeSH
- extracelulární matrix - proteiny metabolismus MeSH
- hmotnostní spektrometrie MeSH
- kalcinóza MeSH
- lidé MeSH
- pes equinovarus etiologie metabolismus MeSH
- předškolní dítě MeSH
- prospektivní studie MeSH
- proteom MeSH
- transformující růstový faktor beta metabolismus MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mužské pohlaví MeSH
- předškolní dítě MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Saiga horn extracts were analyzed with the goal of obtaining new information about compounds present in it. The purpose of this study is to find synthetic alternatives to Saiga horn extract, which is used in traditional Chinese medicine, by identifying potentially biologically active compounds in the extracts. Using high-performance liquid chromatography coupled with high-resolution mass spectrometry, we have been able to identify a series of short-chain polyhydroxybutyrates in alcoholic extracts of Saiga horn. Optimized high-performance liquid chromatography coupled with tandem mass spectrometry methods for analysis of short-chain poly-3-hydroxybutyrates were developed and subsequently applied to investigate Saiga horn extract for the presence of these compounds, which might explain its biological actions, particularly for its antipyretic and procoagulant properties.
Most people worldwide suffer from dental caries. Only a small part of the population is cariesresistant and the reason for this resistance in unknown. Only a few studies compared the saliva protein composition of persons with carious teeth and persons with no caries. Our study is the first to relate proteomic analysis of the caries aetiology with gender. In this study, we compared the differences in the abundances of proteins in the saliva between cariesresistant and caries-susceptible females and males by nano-liquid chromatography-tandem mass spectrometry (Label-Free Quantitative Proteomics). Our results demonstrate that the observed differences in the protein levels might have an influence on anticaries resistance. A total of 19 potential markers of tooth caries were found, for example proteins S100A8 and annexin A1 with higher expression in the cariessusceptible group in comparison with the caries-free group and mucin-5B, lactoferrin, lysozyme C with higher expression in the caries-free group in comparison with the caries-susceptible group. The presented study is the first complex proteomic and gender project where the saliva protein content of caries-free and caries-susceptible persons were compared by label-free MS. The newly detected potential protein markers of dental caries can be a good basis for further research and for possible future therapeutic use.
- MeSH
- chromatografie kapalinová MeSH
- dospělí MeSH
- hmotnostní spektrometrie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- náchylnost k zubnímu kazu * MeSH
- slinné proteiny a peptidy * analýza MeSH
- sliny chemie MeSH
- zubní kaz MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- práce podpořená grantem MeSH
The heart is characterized by a remarkable degree of heterogeneity. Since different cardiac pathologies affect different cardiac regions, it is important to understand molecular mechanisms by which these parts respond to pathological stimuli. In addition to already described left ventricular (LV)/right ventricular (RV) and transmural differences, possible baso-apical heterogeneity has to be taken into consideration. The aim of our study has been, therefore, to compare proteomes in the apical and basal parts of the rat RV and LV. Two-dimensional electrophoresis was used for the proteomic analysis. The major result of this study has revealed for the first time significant baso-apical differences in concentration of several proteins, both in the LV and RV. As far as the LV is concerned, five proteins had higher concentration in the apical compared to basal part of the ventricle. Three of them are mitochondrial and belong to the "metabolism and energy pathways" (myofibrillar creatine kinase M-type, L-lactate dehydrogenase, dihydrolipoamide dehydrogenase). Myosin light chain 3 is a contractile protein and HSP60 belongs to heat shock proteins. In the RV, higher concentration in the apical part was observed in two mitochondrial proteins (creatine kinase S-type and proton pumping NADH:ubiquinone oxidoreductase). The described changes were more pronounced in the LV, which is subjected to higher workload. However, in both chambers was the concentration of proteins markedly higher in the apical than that in basal part, which corresponds to the higher energetic demand and contractile activity of these segments of both ventricles.
- MeSH
- 2D gelová elektroforéza MeSH
- chaperon hsp60 metabolismus MeSH
- chromatografie kapalinová MeSH
- dihydrolipoamiddehydrogenasa metabolismus MeSH
- energetický metabolismus MeSH
- kreatinkinasa, forma MM metabolismus MeSH
- L-laktátdehydrogenasa metabolismus MeSH
- lehké řetězce myosinu metabolismus MeSH
- mitochondriální proteiny metabolismus MeSH
- potkani Wistar MeSH
- proteomika * MeSH
- respirační komplex I metabolismus MeSH
- srdeční komory enzymologie metabolismus MeSH
- svalové proteiny izolace a purifikace metabolismus MeSH
- tandemová hmotnostní spektrometrie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Proteins and their modifications of the natural mummy of Cangrande della Scala (Prince of Verona, Northern Italy, 1291-1329) were studied. The nano-LC-Q-TOF analysis of samples of rib bone and muscle from the mummy showed the presence of different proteins including Types I, III, IV, V, and XI collagen, hemoglobin (subunits alpha and beta), ferritin, biglycan, vitronectin, prothrombin, and osteocalcin. The structure of Type I and Type III collagen was deeply studied to evaluate the occurrence of modifications in comparison with Type I and Type III collagen coming from tissues of recently died people. This analysis showed high percentage of asparaginyl and glutaminyl deamidation, carbamylation and carboxymethylation of lysine, as well as oxidation and dioxidation of methionine. The most common reaction during the natural mummification process was oxidation-the majority of lysine and proline of collagen Type I was hydroxylated whereas methionine was oxidated (oxidated or dioxidated). To the best of our knowledge, this is the first study which reports the protein profile of a natural mummified human tissue and the first one which describes the carbamylation and carboxymethylation of lysine in mummified tissues.
- MeSH
- dějiny středověku MeSH
- hemoglobiny chemie MeSH
- kolagen chemie MeSH
- lidé MeSH
- mumie * MeSH
- posttranslační úpravy proteinů * MeSH
- Check Tag
- dějiny středověku MeSH
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- historické články MeSH
UNLABELLED: Most people in the world suffer from dental caries, >90% of adults experience caries on enamel and root surfaces during their life. However, the overall roles of all factors in the development of dental caries still remain unclear and are worthy of recent investigation. In this study we used a proteomic 2D-DIGE approach in connection with MS/MS to investigate the different protein abundances in the tooth pulp of human third molars obtained from caries-resistant and caries-susceptible people. Statistical analysis of the two protein maps obtained on large gel (17cm length) and mini gel (7cm length) followed by nLC-MS/MS analysis enabled the identification of 16 significantly changed spots with unique protein identifications corresponding to 12 non-redundant proteins. Seven proteins exhibited higher and four proteins exhibited lower expression in the caries-resistant samples compared to the caries-susceptible samples. Additionally, one protein (alpha-1-antitrypsin) exhibited both expressions (up and down). Most of the differentially expressed proteins were associated with protein metabolism, energy production, cytoskeletal organization and transport. These differentially expressed proteins are likely involved in the natural resistance or susceptibility of humans to the development of dental caries and suggest that the resistance mechanism is multifactorial. BIOLOGICAL SIGNIFICANCE: Dental caries are not a serious and life-threatening disease, but their healing requires many remedies and takes up a lot of time. Moreover, neglecting the problem may lead to tooth loss, which can strongly reduce the quality of life. Therefore the identifying effective and safe oral medicine and determining the causes of caries-resistance were viewed as the main aims of this study. Our work aims to elucidate the mechanism of natural human resistance to the development of dental caries by studying the proteomes of tooth pulp isolated from patients who displayed different prevalences of tooth caries. This study is the first protein tooth pulp comparison of sound teeth obtained from caries-resistant versus caries-susceptible people.
- MeSH
- dvourozměrná diferenční gelová elektroforéza MeSH
- lidé MeSH
- molár třetí MeSH
- náchylnost k nemoci etiologie MeSH
- odolnost vůči nemocem MeSH
- proteom analýza MeSH
- proteomika metody MeSH
- tandemová hmotnostní spektrometrie MeSH
- zubní dřeň chemie MeSH
- zubní kaz etiologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
INTRODUCTION: The unique pulp-dentin complex demonstrates strong regenerative potential, which enables it to respond to disease and traumatic injury. Identifying the proteins of the pulp-dentin complex is crucial to understanding the mechanisms of regeneration, tissue calcification, defense processes, and the reparation of dentin by dental pulp. The lack of knowledge of these proteins limits the development of more efficient therapies. METHODS: The proteomic profile of human tooth pulp was investigated and compared with the proteome of human dentin and blood. The samples of tooth pulp were obtained from 5 sound permanent human third molars of 5 adults (n = 5). The extracted proteins were separated by 2-dimensional gel electrophoresis, analyzed by nano-liquid chromatography tandem mass spectrometry, and identified by correlating mass spectra to the proteomic databases. RESULTS: A total of 342 proteins were identified with high confidence, and 2 proteins were detected for the first time in an actual human sample. The identified tooth pulp proteins have a variety of functions: structural, catalytic, transporter, protease activity, immune response, and many others. In a comparison with dentin and blood plasma, 140 (pulp/dentin) shared proteins were identified, 37 of which were not observed in plasma. It can be suggested that they might participate in the unique pulp-dentin complex. CONCLUSIONS: This proteomic investigation of human tooth pulp, together with the previously published study of human dentin, is one of the most comprehensive proteome lists of human teeth to date.
- MeSH
- 2D gelová elektroforéza MeSH
- chromatografie kapalinová MeSH
- dentin chemie MeSH
- dospělí MeSH
- energetický metabolismus fyziologie MeSH
- hmotnostní spektrometrie MeSH
- imunoproteiny analýza MeSH
- krevní proteiny analýza MeSH
- lidé MeSH
- mezibuněčná komunikace fyziologie MeSH
- mladý dospělý MeSH
- nanotechnologie MeSH
- proliferace buněk MeSH
- proteiny metabolismus MeSH
- proteom analýza klasifikace MeSH
- signální transdukce fyziologie MeSH
- tandemová hmotnostní spektrometrie MeSH
- zubní dřeň chemie MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Teeth have been a focus of interest for many centuries--due to medical problems with them. They are the hardest part of the human body and are composed of three mineralized parts--enamel, dentin and cementum, together with the soft pulp. However, saliva also has a significant impact on tooth quality. Proteomic research of human teeth is now accelerating, and it includes all parts of the tooth. Some methodological problems still need to be overcome in this research field--mainly connected with calcified tissues. This review will provide an overview of the current state of research with focus on the individual parts of the tooth and pellicle layer as well as saliva. These proteomic results can help not only stomatology in terms of early diagnosis, identifying risk factors, and systematic control.