A key aim in wildlife disease ecology is to understand how host and parasite characteristics influence parasite transmission and persistence. Variation in host population density can have strong impacts on transmission and outbreaks, and theory predicts particular transmission-density patterns depending on how parasites are transmitted between individuals. Here, we present the results of a study on the dynamics of Morogoro arenavirus in a population of multimammate mice (Mastomys natalensis). This widespread African rodent, which is also the reservoir host of Lassa arenavirus in West Africa, is known for its strong seasonal density fluctuations driven by food availability. We investigated to what degree virus transmission changes with host population density and how the virus might be able to persist during periods of low host density. A seven-year capture-mark-recapture study was conducted in Tanzania where rodents were trapped monthly and screened for the presence of antibodies against Morogoro virus. Observed seasonal seroprevalence patterns were compared with those generated by mathematical transmission models to test different hypotheses regarding the degree of density dependence and the role of chronically infected individuals. We observed that Morogoro virus seroprevalence correlates positively with host density with a lag of 1-4 months. Model results suggest that the observed seasonal seroprevalence dynamics can be best explained by a combination of vertical and horizontal transmission and that a small number of animals need to be infected chronically to ensure viral persistence. Transmission dynamics and viral persistence were best explained by the existence of both acutely and chronically infected individuals and by seasonally changing transmission rates. Due to the presence of chronically infected rodents, rodent control is unlikely to be a feasible approach for eliminating arenaviruses such as Lassa virus from Mastomys populations.
- MeSH
- Arenavirus imunologie MeSH
- hustota populace MeSH
- infekce viry z čeledi Arenaviridae epidemiologie MeSH
- myši MeSH
- nemoci hlodavců epidemiologie MeSH
- protilátky virové MeSH
- séroepidemiologické studie MeSH
- zdroje nemoci veterinární MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Tanzanie MeSH
BACKGROUND: Parasite evolution is hypothesized to select for levels of parasite virulence that maximise transmission success. When host population densities fluctuate, low levels of virulence with limited impact on the host are expected, as this should increase the likelihood of surviving periods of low host density. We examined the effects of Morogoro arenavirus on the survival and recapture probability of multimammate mice (Mastomys natalensis) using a seven-year capture-mark-recapture time series. Mastomys natalensis is the natural host of Morogoro virus and is known for its strong seasonal density fluctuations. RESULTS: Antibody presence was negatively correlated with survival probability (effect size: 5-8% per month depending on season) but positively with recapture probability (effect size: 8%). CONCLUSIONS: The small negative correlation between host survival probability and antibody presence suggests that either the virus has a negative effect on host condition, or that hosts with lower survival probability are more likely to obtain Morogoro virus infection, for example due to particular behavioural or immunological traits. The latter hypothesis is supported by the positive correlation between antibody status and recapture probability which suggests that risky behaviour might increase the probability of becoming infected.
- MeSH
- analýza přežití MeSH
- Arenavirus imunologie izolace a purifikace MeSH
- chování zvířat MeSH
- infekce viry z čeledi Arenaviridae mortalita veterinární MeSH
- Murinae * MeSH
- nemoci hlodavců mortalita virologie MeSH
- protilátky virové krev MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH