Chronic kidney disease (CKD) affects approximately 13% of people globally, including 20%-48% with type 2 diabetes (T2D), resulting in significant morbidity, mortality, and healthcare costs. There is an urgent need to increase early screening and intervention for CKD. We are experts in diabetology and nephrology in Central Europe and Israel. Herein, we review evidence supporting the use of sodium-glucose cotransporter-2 (SGLT2) inhibitors for kidney protection and discuss barriers to early CKD diagnosis and treatment, including in our respective countries. SGLT2 inhibitors exert cardiorenal protective effects, demonstrated in the renal outcomes trials (EMPA-KIDNEY, DAPA-CKD, CREDENCE) of empagliflozin, dapagliflozin, and canagliflozin in patients with CKD. EMPA-KIDNEY demonstrated cardiorenal efficacy across the broadest renal range, regardless of T2D status. Renoprotective evidence also comes from large real-world studies. International guidelines recommend first-line SGLT2 inhibitors for patients with T2D and estimated glomerular filtration rate (eGFR) ≥20 mL/min/1.73 m2, and that glucagon-like peptide-1 receptor agonists may also be administered if required for additional glucose control. Although these guidelines recommend at least annual eGFR and urine albumin-to-creatinine ratio screening for patients with T2D, observational studies suggest that only half are screened. Diagnosis is hampered by asymptomatic early CKD and under-recognition among patients with T2D and clinicians, including limited knowledge/use of guidelines and resources. Based on our experience and on the literature, we recommend robust screening programmes, potentially with albuminuria self-testing, and SGLT2 inhibitor reimbursement at general practitioner (GP) and specialist levels. High-tech tools (artificial intelligence, smartphone apps, etc.) are providing exciting opportunities to identify high-risk individuals, self-screen, detect abnormalities in images, and assist with prescribing and treatment adherence. Better education is also needed, alongside provision of concise guidelines, enabling GPs to identify who would benefit from early initiation of renoprotective therapy; although, regardless of current renal function, cardiorenal protection is provided by SGLT2 inhibitor therapy.
- MeSH
- Benzhydryl Compounds therapeutic use MeSH
- Early Diagnosis * MeSH
- Renal Insufficiency, Chronic * drug therapy diagnosis MeSH
- Diabetes Mellitus, Type 2 * drug therapy complications MeSH
- Diabetic Nephropathies * diagnosis prevention & control drug therapy MeSH
- Sodium-Glucose Transporter 2 Inhibitors * therapeutic use MeSH
- Glucosides therapeutic use MeSH
- Glomerular Filtration Rate drug effects MeSH
- Humans MeSH
- Practice Guidelines as Topic MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Review MeSH
Older individuals experience cardiovascular dysfunction during extended bedridden hospital or care home stays. Bed rest is also used as a model to simulate accelerated vascular deconditioning occurring during spaceflight. This study investigates changes in retinal microcirculation during a ten-day bed rest protocol. Ten healthy young males (22.9 ± 4.7 years; body mass index: 23.6 ± 2.5 kg·m-2) participated in a strictly controlled repeated-measures bed rest study lasting ten days. High-resolution images were obtained using a hand-held fundus camera at baseline, daily during the 10 days of bed rest, and 1 day after re-ambulation. Retinal vessel analysis was performed using a semi-automated software system to obtain metrics for retinal arteriolar and venular diameters, central retinal artery equivalent and central retinal vein equivalent, respectively. Data analysis employed a mixed linear model. At the end of the bed rest period, a significant decrease in retinal venular diameter was observed, indicated by a significantly lower central retinal vein equivalent (from 226.1 μm, CI 8.90, to 211.4 μm, CI 8.28, p = .026), while no significant changes in central retinal artery equivalent were noted. Prolonged bed rest confinement resulted in a significant (up to 6.5%) reduction in retinal venular diameter. These findings suggest that the changes in retinal venular diameter during bedrest may be attributed to plasma volume losses and reflect overall (cardio)-vascular deconditioning.
- MeSH
- Retinal Artery * diagnostic imaging MeSH
- Fluorescein Angiography MeSH
- Bed Rest adverse effects MeSH
- Humans MeSH
- Retinal Vessels diagnostic imaging MeSH
- Retinal Vein * diagnostic imaging MeSH
- Check Tag
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) affects the cardiovascular system. The current study investigated changes in heart rate (HR), blood pressure (BP), pulse wave velocity (PWV), and microcirculation in patients recovering from Coronavirus disease 2019 (COVID-19) infection. METHODOLOGY: Out of 43 initially contacted COVID-19 patients, 35 (30 males, 5 females; age: 60 ± 10 years; and body mass index (BMI): 31.8 ± 4.9) participated in this study. Participants were seen on two occasions after hospital discharge; the baseline measurements were collected, either on the day of hospital discharge if a negative PCR test was obtained, or on the 10th day after hospitalization if the PCR test was positive. The second measurements were done 60 days after hospitalization. The vascular measurements were performed using the VICORDER® device and a retinal blood vessel image analysis. RESULTS: A significant increase in systolic BP (SBP) (from 142 mmHg, SD: 15, to 150 mmHg, SD: 19, p = 0.041), reduction in HR (from 76 bpm, SD: 15, to 69 bpm, SD: 11, p = 0.001), and narrower central retinal vein equivalent (CRVE) (from 240.94 μm, SD: 16.05, to 198.05 μm, SD: 17.36, p = 0.013) were found. Furthermore, the trends of increasing PWV (from 11 m/s, SD: 3, to 12 m/s, SD: 3, p = 0.095) and decreasing CRAE (from 138.87 μm, SD: 12.19, to 136.77 μm, SD: 13.19, p = 0.068) were recorded. CONCLUSION: The present study investigated cardiovascular changes following COVID-19 infection at two-time points after hospital discharge (baseline measurements and 60 days post-hospitalization). Significant changes were found in systolic blood pressure, heart rate, and microvasculature indicating that vascular adaptations may be ongoing even weeks after hospitalization from COVID-19 infection. Future studies could involve conducting additional interim assessments during the active infection and post-infection periods.
- MeSH
- Pulse Wave Analysis MeSH
- COVID-19 * MeSH
- Hypertension * MeSH
- Blood Pressure physiology MeSH
- Middle Aged MeSH
- Humans MeSH
- Microcirculation MeSH
- Pilot Projects MeSH
- SARS-CoV-2 MeSH
- Aged MeSH
- Vascular Stiffness * physiology MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- MeSH
- Bariatric Surgery * adverse effects MeSH
- Diabetes Mellitus, Type 2 * complications surgery MeSH
- Duodenum surgery MeSH
- Cardiovascular Diseases * surgery MeSH
- Humans MeSH
- Obesity, Morbid * complications surgery MeSH
- Obesity complications surgery MeSH
- Risk Factors MeSH
- Treatment Outcome MeSH
- Gastric Bypass * adverse effects MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
BACKGROUND: For patients with type 2 diabetes (T2D), cardiovascular disease (CVD) is the single most common cause of mortality. In 2008 and 2012, the Federal Drug Administration (FDA) and the European Medicines Agency (EMA) respectively mandated cardiovascular outcomes trials (CVOTs) on all new anti-diabetic agents, as prospective trials statistically powered to rule out excess cardiovascular risk in patients with T2D. Unexpectedly, some of these CVOTs have demonstrated not only cardiovascular safety, but also cardioprotective effects, as was first shown for the SGLT2 inhibitor empagliflozin in EMPA-REG OUTCOME. EXPERT OPINION: To debate newly available CVOT data and to put them into context, we convened as a group of medical experts from the Central and Eastern European Region. Here we describe our discussions, focusing on the conclusions we can draw from EMPA-REG OUTCOME and other SGLT2 inhibitor CVOTs, including when considered alongside real-world evidence. CONCLUSION: CVOTs investigating SGLT2 inhibitors have suggested benefits beyond glucose lowering that have been confirmed in real-world evidence studies.