The disruption of the protein-protein interaction (PPI) between Nrf2 and Keap1 is an attractive strategy to counteract the oxidative stress that characterises a variety of severe diseases. Peptides represent a complementary approach to small molecules for the inhibition of this therapeutically important PPI. However, due to their polar nature and the negative net charge required for binding to Keap1, the peptides reported to date exhibit either mid-micromolar activity or are inactive in cells. Herein, we present a two-component peptide stapling strategy to rapidly access a variety of constrained and functionalised peptides that target the Nrf2/Keap1 PPI. The most promising peptide, P8-H containing a fatty acid tag, binds to Keap1 with nanomolar affinity and is effective at inducing transcription of ARE genes in a human lung epithelial cell line at sub-micromolar concentration. Furthermore, crystallography of the peptide in complex with Keap1 yielded a high resolution X-ray structure, adding to the toolbox of structures available to develop cell-permeable peptidomimetic inhibitors.
- Publikační typ
- časopisecké články MeSH
Numerous antibody-drug conjugate (ADC) linker technologies exist for the synthesis of ADCs with drug-to-antibody ratios (DARs) being an even integer (typically 2, 4 or 8). However, ADCs with odd-integer DARs are significantly harder to synthesise. Here, we report the synthesis of ADCs loaded with a single warhead, using TetraDVP linkers which simultaneously re-bridge all four interchain disulfides of an IgG1 antibody.
- MeSH
- disulfidy MeSH
- imunokonjugáty * MeSH
- indikátory a reagencie MeSH
- protinádorové látky * MeSH
- Publikační typ
- časopisecké články MeSH