- Klíčová slova
- Alphafold,
- MeSH
- databáze proteinů MeSH
- konformace proteinů * MeSH
Interactions between proteins and their small molecule ligands are of great importance for the process of drug design. Here we report an unbiased molecular dynamics simulation of systems containing hevein domain (HEV32) with N-acetylglucosamine mono-, di- or trisaccharide. Carbohydrate molecules were placed outside the binding site. Three of six simulations (6 × 2 μs) led to binding of a carbohydrate ligand into the binding mode in agreement with the experimentally determined structure. Unbinding was observed in one simulation (monosaccharide). There were no remarkable intermediates of binding for mono and disaccharide. Trisaccharide binding was initiated by formation of carbohydrate-aromatic CH/π interactions. Our results indicate that binding of ligands followed the model of conformational selection because the conformation of the protein ready for ligand binding was observed before the binding. This study extends the concept of docking by dynamics on carbohydrate-protein interactions.
Human histone deacetylase 6 (HDAC6) is the major deacetylase responsible for removing the acetyl group from Lys40 of α-tubulin (αK40), which is located lumenally in polymerized microtubules. Here, we provide a detailed kinetic analysis of tubulin deacetylation and HDAC6/microtubule interactions using individual purified components. Our data unequivocally show that free tubulin dimers represent the preferred HDAC6 substrate, with a K M value of 0.23 µM and a deacetylation rate over 1,500-fold higher than that of assembled microtubules. We attribute the lower deacetylation rate of microtubules to both longitudinal and lateral lattice interactions within tubulin polymers. Using TIRF microscopy, we directly visualized stochastic binding of HDAC6 to assembled microtubules without any detectable preferential binding to microtubule tips. Likewise, indirect immunofluorescence microscopy revealed that microtubule deacetylation by HDAC6 is carried out stochastically along the whole microtubule length, rather than from the open extremities. Our data thus complement prior studies on tubulin acetylation and further strengthen the rationale for the correlation between tubulin acetylation and microtubule age.