INTRODUCTION: Precise localization of the epileptogenic zone is critical for successful epilepsy surgery. However, imbalanced datasets in terms of epileptic vs. normal electrode contacts and a lack of standardized evaluation guidelines hinder the consistent evaluation of automatic machine learning localization models. METHODS: This study addresses these challenges by analyzing class imbalance in clinical datasets and evaluating common assessment metrics. Data from 139 drug-resistant epilepsy patients across two Institutions were analyzed. Metric behaviors were examined using clinical and simulated data. RESULTS: Complementary use of Area Under the Receiver Operating Characteristic (AUROC) and Area Under the Precision-Recall Curve (AUPRC) provides an optimal evaluation approach. This must be paired with an analysis of class imbalance and its impact due to significant variations found in clinical datasets. CONCLUSIONS: The proposed framework offers a comprehensive and reliable method for evaluating machine learning models in epileptogenic zone localization, improving their precision and clinical relevance. SIGNIFICANCE: Adopting this framework will improve the comparability and multicenter testing of machine learning models in epileptogenic zone localization, enhancing their reliability and ultimately leading to better surgical outcomes for epilepsy patients.
- MeSH
- dospělí MeSH
- elektrokortikografie metody normy MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- refrakterní epilepsie * chirurgie patofyziologie MeSH
- strojové učení * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
OBJECTIVE: Evidence suggests that the most promising results in interictal localization of the epileptogenic zone (EZ) are achieved by a combination of multiple stereo-electroencephalography (SEEG) biomarkers in machine learning models. These biomarkers usually include SEEG features calculated in standard frequency bands, but also high-frequency (HF) bands. Unfortunately, HF features require extra effort to record, store, and process. Here we investigate the added value of these HF features for EZ localization and postsurgical outcome prediction. METHODS: In 50 patients we analyzed 30 min of SEEG recorded during non-rapid eye movement sleep and tested a logistic regression model with three different sets of features. The first model used broadband features (1-500 Hz); the second model used low-frequency features up to 45 Hz; and the third model used HF features above 65 Hz. The EZ localization by each model was evaluated by various metrics including the area under the precision-recall curve (AUPRC) and the positive predictive value (PPV). The differences between the models were tested by the Wilcoxon signed-rank tests and Cliff's Delta effect size. The differences in outcome predictions based on PPV values were further tested by the McNemar test. RESULTS: The AUPRC score of the random chance classifier was .098. The models (broad-band, low-frequency, high-frequency) achieved median AUPRCs of .608, .582, and .522, respectively, and correctly predicted outcomes in 38, 38, and 33 patients. There were no statistically significant differences in AUPRC or any other metric between the three models. Adding HF features to the model did not have any additional contribution. SIGNIFICANCE: Low-frequency features are sufficient for correct localization of the EZ and outcome prediction with no additional value when considering HF features. This finding allows significant simplification of the feature calculation process and opens the possibility of using these models in SEEG recordings with lower sampling rates, as commonly performed in clinical routines.
- MeSH
- dítě MeSH
- dospělí MeSH
- elektroencefalografie * metody MeSH
- epilepsie chirurgie patofyziologie diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- refrakterní epilepsie chirurgie patofyziologie diagnóza MeSH
- stereotaktické techniky MeSH
- výsledek terapie MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Well-documented sleep datasets from healthy adults are important for sleep pattern analysis and comparison with a wide range of neuropsychiatric disorders. Currently, available sleep datasets from healthy adults are acquired using low-density arrays with a minimum of four electrodes in a typical sleep montage. The low spatial resolution is thus prohibitive for the analysis of the spatial structure of sleep. Here we introduce an open-access sleep dataset from 29 healthy adults (13 female, aged 32.17 ± 6.30 years) acquired at the Montreal Neurological Institute. The dataset includes overnight polysomnograms with high-density scalp electroencephalograms incorporating 83 electrodes, electrocardiogram, electromyogram, electrooculogram, and an average of electrode positions using manual co-registrations and sleep scoring annotations. Data characteristics and group-level analysis of sleep properties were assessed. The database can be accessed through ( https://doi.org/10.17605/OSF.IO/R26FH ). This is the first high-density electroencephalogram open sleep database from healthy adults, allowing researchers to investigate sleep physiology at high spatial resolution. We expect that this database will serve as a valuable resource for studying sleep physiology and for benchmarking sleep pathology.
- MeSH
- databáze faktografické MeSH
- dospělí MeSH
- elektroencefalografie * MeSH
- lidé MeSH
- polysomnografie * MeSH
- skalp * MeSH
- spánek * MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- dataset MeSH
OBJECTIVE: Interictal biomarkers of the epileptogenic zone (EZ) and their use in machine learning models open promising avenues for improvement of epilepsy surgery evaluation. Currently, most studies restrict their analysis to short segments of intracranial EEG (iEEG). METHODS: We used 2381 hours of iEEG data from 25 patients to systematically select 5-minute segments across various interictal conditions. Then, we tested machine learning models for EZ localization using iEEG features calculated within these individual segments or across them and evaluated the performance by the area under the precision-recall curve (PRAUC). RESULTS: On average, models achieved a score of 0.421 (the result of the chance classifier was 0.062). However, the PRAUC varied significantly across the segments (0.323-0.493). Overall, NREM sleep achieved the highest scores, with the best results of 0.493 in N2. When using data from all segments, the model performed significantly better than single segments, except NREM sleep segments. CONCLUSIONS: The model based on a short segment of iEEG recording can achieve similar results as a model based on prolonged recordings. The analyzed segment should, however, be carefully and systematically selected, preferably from NREM sleep. SIGNIFICANCE: Random selection of short iEEG segments may give rise to inaccurate localization of the EZ.
- MeSH
- časové faktory MeSH
- dospělí MeSH
- elektroencefalografie * metody MeSH
- elektrokortikografie metody normy MeSH
- epilepsie * patofyziologie diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mozek patofyziologie MeSH
- stadia spánku fyziologie MeSH
- strojové učení * MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Interictal very high-frequency oscillations (VHFOs, 500-2000 Hz) in a resting awake state seem to be, according to a precedent study of our team, a more specific predictor of a good outcome of the epilepsy surgery compared to traditional interictal high-frequency oscillations (HFOs, 80-500 Hz). In this study, we retested this hypothesis on a larger cohort of patients. In addition, we also collected patients' sleep data and hypothesized that the occurrence of VHFOs in sleep will be greater than in resting state. We recorded interictal invasive electroencephalographic (iEEG) oscillations in 104 patients with drug-resistant epilepsy in a resting state and in 35 patients during sleep. 21 patients in the rest study and 11 patients in the sleep study met the inclusion criteria (interictal HFOs and VHFOs present in iEEG recordings, a surgical intervention and a postoperative follow-up of at least 1 year) for further evaluation of iEEG data. In the rest study, patients with good postoperative outcomes had significantly higher ratio of resected contacts with VHFOs compared to HFOs. In sleep, VHFOs were more abundant than in rest and the percentage of resected contacts in patients with good and poor outcomes did not considerably differ in any type of oscillations. In conclusion, (1) our results confirm, in a larger patient cohort, our previous work about VHFOs being a specific predictor of the area which needs to be resected; and (2) that more frequent sleep VHFOs do not further improve the results.
- MeSH
- bdění MeSH
- elektroencefalografie metody MeSH
- epilepsie * MeSH
- lidé MeSH
- refrakterní epilepsie * chirurgie MeSH
- spánek MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- MeSH
- biologické markery MeSH
- elektroencefalografie * MeSH
- lidé MeSH
- záchvaty * diagnóza MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- dopisy MeSH
- komentáře MeSH
OBJECTIVE: High-frequency oscillations are considered among the most promising interictal biomarkers of the epileptogenic zone in patients suffering from pharmacoresistant focal epilepsy. However, there is no clear definition of pathological high-frequency oscillations, and the existing detectors vary in methodology, performance, and computational costs. This study proposes relative entropy as an easy-to-use novel interictal biomarker of the epileptic tissue. METHODS: We evaluated relative entropy and high-frequency oscillation biomarkers on intracranial electroencephalographic data from 39 patients with seizure-free postoperative outcome (Engel Ia) from three institutions. We tested their capability to localize the epileptogenic zone, defined as resected contacts located in the seizure onset zone. The performance was compared using areas under the receiver operating curves (AUROCs) and precision-recall curves. Then we tested whether a universal threshold can be used to delineate the epileptogenic zone across patients from different institutions. RESULTS: Relative entropy in the ripple band (80-250 Hz) achieved an average AUROC of .85. The normalized high-frequency oscillation rate in the ripple band showed an identical AUROC of .85. In contrast to high-frequency oscillations, relative entropy did not require any patient-level normalization and was easy and fast to calculate due to its clear and straightforward definition. One threshold could be set across different patients and institutions, because relative entropy is independent of signal amplitude and sampling frequency. SIGNIFICANCE: Although both relative entropy and high-frequency oscillations have a similar performance, relative entropy has significant advantages such as straightforward definition, computational speed, and universal interpatient threshold, making it an easy-to-use promising biomarker of the epileptogenic zone.
Very high-frequency oscillations (VHFOs, > 500 Hz) are more specific in localizing the epileptogenic zone (EZ) than high-frequency oscillations (HFOs, < 500 Hz). Unfortunately, VHFOs are not visible in standard clinical stereo-EEG (SEEG) recordings with sampling rates of 1 kHz or lower. Here we show that "shadows" of VHFOs can be found in frequencies below 500 Hz and can help us to identify SEEG channels with a higher probability of increased VHFO rates. Subsequent analysis of Logistic regression models on 141 SEEG channels from thirteen patients shows that VHFO "shadows" provide additional information to gold standard HFO analysis and can potentially help in precise EZ delineation in standard clinical recordings.
The electrophysiological EEG features such as high frequency oscillations, spikes and functional connectivity are often used for delineation of epileptogenic tissue and study of the normal function of the brain. The epileptogenic activity is also known to be suppressed by cognitive processing. However, differences between epileptic and healthy brain behavior during rest and task were not studied in detail. In this study we investigate the impact of cognitive processing on epileptogenic and non-epileptogenic hippocampus and the intracranial EEG features representing the underlying electrophysiological processes. We investigated intracranial EEG in 24 epileptic and 24 non-epileptic hippocampi in patients with intractable focal epilepsy during a resting state period and during performance of various cognitive tasks. We evaluated the behavior of features derived from high frequency oscillations, interictal epileptiform discharges and functional connectivity and their changes in relation to cognitive processing. Subsequently, we performed an analysis whether cognitive processing can contribute to classification of epileptic and non-epileptic hippocampus using a machine learning approach. The results show that cognitive processing suppresses epileptogenic activity in epileptic hippocampus while it causes a shift toward higher frequencies in non-epileptic hippocampus. Statistical analysis reveals significantly different electrophysiological reactions of epileptic and non-epileptic hippocampus during cognitive processing, which can be measured by high frequency oscillations, interictal epileptiform discharges and functional connectivity. The calculated features showed high classification potential for epileptic hippocampus (AUC = 0.93). In conclusion, the differences between epileptic and non-epileptic hippocampus during cognitive processing bring new insight in delineation between pathological and physiological processes. Analysis of computed iEEG features in rest and task condition can improve the functional mapping during pre-surgical evaluation and provide additional guidance for distinguishing between epileptic and non-epileptic structure which is absolutely crucial for achieving the best possible outcome with as little side effects as possible.
- Publikační typ
- časopisecké články MeSH