INTRODUCTION: Hepatocyte nuclear factor 1-beta (HNF1B) gene variants or the chromosome 17q12 deletion (17q12del) represent the most common monogenic cause of developmental kidney disease. Although neurodevelopmental disorders have been associated with the 17q12del, specific genotype-phenotype associations with respect to kidney function evolution have not yet been fully defined. Here, we aimed to determine whether 17q12del or specific HNF1B variants were associated with kidney survival in a large patient population with HNF1B disease. METHODS: This was a retrospective observational study involving 521 patients with HNF1B disease from 14 countries using the European Reference Network for rare kidney diseases with detailed information on the HNF1B genotype (HNF1B variants or the 17q12del). Median follow-up time was 11 years with 6 visits per patient. The primary end point was progression to chronic kidney disease (CKD) stage 3 (estimated glomerular filtration rate [eGFR] < 60 ml/min per 1.73 m2). Secondary end points were the development of hypomagnesemia or extrarenal disorders, including hyperuricemia and hyperglycemia. RESULTS: Progression toward CKD stage 3 was significantly delayed in patients with the 17q12del compared to patients with HNF1B variants (hazard ratio [HR]: 0.29, 95% confidence interval [CI]: 0.19-0.44, P < 0.001). Progression toward CKD stage 3 was also significantly delayed when HNF1B variants involved the HNF1B Pit-1, Oct-1, and Unc-86 homeodomain (POUh) DNA-binding and transactivation domains rather than the POU-specific domain (POUs) DNA-binding domain (HR: 0.15 [95% CI: 0.06-0.37), P < 0.001 and HR: 0.25 (95% CI: 0.11-0.57), P = 0.001, respectively). Finally, the 17q12del was positively associated with hypomagnesemia and negatively associated with hyperuricemia, but not with hyperglycemia. CONCLUSION: Patients with the 17q12del display a significantly better kidney survival than patients with other HNF1B variants; and for the latter, variants in the POUs DNA-binding domain lead to the poorest kidney survival. These are clinically relevant HNF1B kidney genotype-phenotype correlations that inform genetic counseling.
- Publication type
- Journal Article MeSH
BACKGROUND: Estimates of rare disease (RD) population impact in terms of number of affected patients and accurate disease definition is hampered by their under-representation in current coding systems. This study tested the use of a specific RD codification system (ORPHAcodes) in five European countries/regions (Czech Republic, Malta, Romania, Spain, Veneto region-Italy) across different data sources over the period January 2019-September 2021. RESULTS: Overall, 3133 ORPHAcodes were used to describe RD diagnoses, mainly corresponding to the disease/subtype of disease aggregation level of the Orphanet classification (82.2%). More than half of the ORPHAcodes (53.6%) described diseases having a very low prevalence (< 1 case per million), and most commonly captured rare developmental defects during embryogenesis (31.3%) and rare neurological diseases (17.6%). ORPHAcodes described disease entities more precisely than corresponding ICD-10 codes in 83.4% of cases. CONCLUSIONS: ORPHAcodes were found to be a versatile resource for the coding of RD, able to assure easiness of use and inter-country comparability across population and hospital databases. Future research on the impact of ORPHAcoding as to the impact of numbers of RD patients with improved coding in health information systems is needed to inform on the real magnitude of this public health issue.
- MeSH
- Databases, Factual MeSH
- Humans MeSH
- Hospitals * MeSH
- Rare Diseases * epidemiology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Czech Republic MeSH
- Europe MeSH
Autosomal dominant tubulointerstitial kidney disease (ADTKD) is a recently defined entity that includes rare kidney diseases characterized by tubular damage and interstitial fibrosis in the absence of glomerular lesions, with inescapable progression to end-stage renal disease. These diseases have long been neglected and under-recognized, in part due to confusing and inconsistent terminology. The introduction of a gene-based, unifying terminology led to the identification of an increasing number of cases, with recent data suggesting that ADTKD is one of the more common monogenic kidney diseases after autosomal dominant polycystic kidney disease, accounting for ~5% of monogenic disorders causing chronic kidney disease. ADTKD is caused by mutations in at least five different genes, including UMOD, MUC1, REN, HNF1B and, more rarely, SEC61A1. These genes encode various proteins with renal and extra-renal functions. The mundane clinical characteristics and lack of appreciation of family history often result in a failure to diagnose ADTKD. This Primer highlights the different types of ADTKD and discusses the distinct genetic and clinical features as well as the underlying mechanisms.
- MeSH
- Biopsy methods MeSH
- Kidney Failure, Chronic epidemiology etiology MeSH
- Genetic Diseases, Inborn complications epidemiology MeSH
- Humans MeSH
- Polycystic Kidney, Autosomal Dominant complications epidemiology physiopathology MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Review MeSH
BACKGROUND: HNF1B gene mutations are an important cause of bilateral (cystic) dysplasia in children, complicated by chronic renal insufficiency. The clinical variability, the absence of genotype-phenotype correlations, and limited long-term data render counseling of affected families difficult. METHODS: Longitudinal data of 62 children probands with genetically proven HNF1B nephropathy was obtained in a multicenter approach. Genetic family cascade screening was performed in 30/62 cases. RESULTS: Eighty-seven percent of patients had bilateral dysplasia, 74% visible bilateral, and 16% unilateral renal cysts at the end of observation. Cyst development was non-progressive in 72% with a mean glomerular filtration rate (GFR) loss of - 0.33 ml/min/1.73m2 per year (± 8.9). In patients with an increase in cyst number, the annual GFR reduction was - 2.8 ml/min/1.73m2 (± 13.2), in the total cohort - 1.0 ml/min/1.73m2 (±10.3). A subset of HNF1B patients differs from this group and develops end stage renal disease (ESRD) at very early ages < 2 years. Hyperuricemia (37%) was a frequent finding at young age (median 1 year), whereas hypomagnesemia (24%), elevated liver enzymes (21%), and hyperglycemia (8%) showed an increased incidence in the teenaged child. Genetic analysis revealed no genotype-phenotype correlations but a significant parent-of-origin effect with a preponderance of 81% of maternal inheritance in dominant cases. CONCLUSIONS: In most children, HNF1B nephropathy has a non-progressive course of cyst development and a slow-progressive course of kidney function. A subgroup of patients developed ESRD at very young age < 2 years requiring special medical attention. The parent-of-origin effect suggests an influence of epigenetic modifiers in HNF1B disease.
- MeSH
- Kidney Failure, Chronic genetics MeSH
- Child MeSH
- Phenotype MeSH
- Genetic Association Studies MeSH
- Hepatocyte Nuclear Factor 1-beta genetics MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Infant, Newborn MeSH
- Polycystic Kidney Diseases genetics pathology physiopathology MeSH
- Child, Preschool MeSH
- Disease Progression MeSH
- Registries MeSH
- Age of Onset MeSH
- Check Tag
- Child MeSH
- Infant MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Infant, Newborn MeSH
- Child, Preschool MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Multicenter Study MeSH
- Research Support, Non-U.S. Gov't MeSH
- Geographicals
- Germany MeSH