Introduction: Olive (Olea uropeae) is a traditional plant containing oleuropein and hydroxytyrosol, which are useful and used empirically for treating diabetes mellitus.Objective: To review the potential of oleuropein and hydroxytyrosol as an evidence base for diabetes potential treatment and safety.Methods: This chapter summarizes several studies available on Pubmed and Google Scholar regarding the characteristic method and extraction method as well as the effectiveness and toxicity of oleuropein and hydroxytyrosol in vitro and in vivo.Result: Oleuropein and hydroxytyrosol are effective antihyperglycemics for treating T2D. They can reduce body weight, basal glycemia, and insulin resistance by stopping the liver from making glucose and stopping the body from absorbing glucose. Several studies have shown that both isolates can control glycemic levels equivalent to free fatty acids and are safe to use.Conclusion: Oleuropein and hydroxytyrosol are extracted by several methods and can be used as potential anti-diabetics with obesity risk factors. Evidence shows that both isolates are safe for both acute and chronic use.
- Klíčová slova
- oleuropein, hydroxytyrosol,
- MeSH
- diabetes mellitus 2. typu farmakoterapie metabolismus MeSH
- hypoglykemika * farmakologie terapeutické užití MeSH
- inzulinová rezistence MeSH
- iridoidy farmakologie terapeutické užití MeSH
- lidé MeSH
- Olea * fyziologie MeSH
- rostlinné extrakty * farmakologie terapeutické užití MeSH
- testy toxicity metody MeSH
- Check Tag
- lidé MeSH
- MeSH
- léčivé rostliny MeSH
- lidé MeSH
- Olea * MeSH
- olivový olej chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- populární práce MeSH
Bark beetles are destructive insect pests known to form symbioses with different fungal taxa, including yeasts. The aim of this study was to (1) determine the prevalence of the rare yeast Hyphopichia heimii in bark beetle frass from wild olive trees in South Africa and to (2) predict the potential interaction of this yeast with trees and bark beetles. Twenty-eight culturable yeast species were isolated from frass in 35 bark beetle galleries, including representatives of H. heimii from nine samples. Physiological characterization of H. heimii isolates revealed that none was able to degrade complex polymers present in hemicellulose; however, all were able to assimilate sucrose and cellobiose, sugars associated with an arboreal habitat. All isolates were able to produce the auxin indole acetic acid, indicative of a potential symbiosis with the tree. Sterol analysis revealed that the isolates possessed ergosterol quantities ranging from 3.644 ± 0.119 to 13.920 ± 1.230 mg/g dry cell weight, which suggested that H. heimii could serve as a source of sterols in bark beetle diets, as is known for other bark beetle-associated fungi. In addition, gas chromatography-mass spectrometry demonstrated that at least one of the isolates, Hyphopichia heimii CAB 1614, was able to convert the insect pheromone cis-verbenol to the anti-aggregation pheromone verbenone. This indicated that H. heimii could potentially influence beetle behaviour. These results support the contention of a tripartite symbiosis between H. heimii, olive trees, and bark beetles.
- MeSH
- brouci * mikrobiologie fyziologie MeSH
- feromony metabolismus MeSH
- kůra rostlin mikrobiologie MeSH
- kvasinky MeSH
- nosatcovití * MeSH
- Olea * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Genetic diversity and population structure studies of local olive germplasm are important to safeguard biodiversity, for genetic resources management and to improve the knowledge on the distribution and evolution patterns of this species. In the present study Algerian olive germplasm was characterized using 16 nuclear (nuSSR) and six chloroplast (cpSSR) microsatellites. Algerian varieties, collected from the National Olive Germplasm Repository (ITAFV), 10 of which had never been genotyped before, were analyzed. Our results highlighted the presence of an exclusive genetic core represented by 13 cultivars located in a mountainous area in the North-East of Algeria, named Little Kabylie. Comparison with published datasets, representative of the Mediterranean genetic background, revealed that the most Algerian varieties showed affinity with Central and Eastern Mediterranean cultivars. Interestingly, cpSSR phylogenetic analysis supported results from nuSSRs, highlighting similarities between Algerian germplasm and wild olives from Greece, Italy, Spain and Morocco. This study sheds light on the genetic relationship of Algerian and Mediterranean olive germplasm suggesting possible events of secondary domestication and/or crossing and hybridization across the Mediterranean area. Our findings revealed a distinctive genetic background for cultivars from Little Kabylie and support the increasing awareness that North Africa represents a hotspot of diversity for crop varieties and crop wild relative species.
- MeSH
- chloroplasty genetika MeSH
- fylogeneze * MeSH
- genetická variace * MeSH
- lidé MeSH
- mikrosatelitní repetice genetika MeSH
- Olea klasifikace genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Alžírsko MeSH
- Itálie MeSH
- Maroko MeSH
- Řecko MeSH
- severní Afrika MeSH
- Španělsko MeSH
Forecasting the growth of tree species to future environmental changes requires a better understanding of its determinants. Tree growth is known to respond to global-change drivers such as climate change or atmospheric deposition, as well as to local land-use drivers such as forest management. Yet, large geographical scale studies examining interactive growth responses to multiple global-change drivers are relatively scarce and rarely consider management effects. Here, we assessed the interactive effects of three global-change drivers (temperature, precipitation and nitrogen deposition) on individual tree growth of three study species (Quercus robur/petraea, Fagus sylvatica and Fraxinus excelsior). We sampled trees along spatial environmental gradients across Europe and accounted for the effects of management for Quercus. We collected increment cores from 267 trees distributed over 151 plots in 19 forest regions and characterized their neighbouring environment to take into account potentially confounding factors such as tree size, competition, soil conditions and elevation. We demonstrate that growth responds interactively to global-change drivers, with species-specific sensitivities to the combined factors. Simultaneously high levels of precipitation and deposition benefited Fraxinus, but negatively affected Quercus' growth, highlighting species-specific interactive tree growth responses to combined drivers. For Fagus, a stronger growth response to higher temperatures was found when precipitation was also higher, illustrating the potential negative effects of drought stress under warming for this species. Furthermore, we show that past forest management can modulate the effects of changing temperatures on Quercus' growth; individuals in plots with a coppicing history showed stronger growth responses to higher temperatures. Overall, our findings highlight how tree growth can be interactively determined by global-change drivers, and how these growth responses might be modulated by past forest management. By showing future growth changes for scenarios of environmental change, we stress the importance of considering multiple drivers, including past management and their interactions, when predicting tree growth.
- MeSH
- buk (rod) růst a vývoj MeSH
- dub (rod) růst a vývoj MeSH
- Fraxinus růst a vývoj MeSH
- klimatické změny * MeSH
- koloběh dusíku MeSH
- lesy MeSH
- období sucha MeSH
- stromy růst a vývoj MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Evropa MeSH
Metal-polluted soils represent hostile environments affecting the composition and functions of soil microbial communities. This study evaluated the implication of combining the mycoremediated dry olive residue (MDOR) amendment application with the inoculation of the arbuscular mycorrhizal fungi (AMF) Funneliformis mosseae in restoring the quality, composition, and functionality of soil microbial communities. To achieve this aim, a mesocosms experiment was set up that included three variations: i) with and without application of Penicillium chrysogenum-10-transformed MDOR (MDOR_Pc), and Chondrosterum purpureum-transformed MDOR (MDOR_Cp) amendments; ii) with and without F. mosseae inoculation; and iii) 30-day and 60-day soil treatment time. As a result of this combined treatment, changes in the soil labile organic C and N fractions were observed throughout the experiment. Increases in the abundance of phospholipid fatty acids (PLFAs) for bacteria, actinobacteria, and Gram- and Gram+ bacteria were also recorded at the end of the experiment. The addition of MDOR amendments boosted fungal and AM fungi communities. AM fungi root and soil colonization was also enhanced as the result of improvement nutrient turnover and spatial conditions caused by adding MDOR in combination with an inoculation of F. mosseae. The composition and functionality of microbial communities seemed to be an important ecological attribute indicating an apparently fully functional restoration of this metal-polluted soil and therefore suggesting the suitability of the combined MDOR and AM fungus treatment as a reclamation practice.
- MeSH
- houby MeSH
- kovy MeSH
- látky znečišťující půdu * MeSH
- mikrobiota * MeSH
- mykorhiza * MeSH
- Olea * MeSH
- půda MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
The use of biotransformed dry olive residue (DOR) as organic soil amendment has recently been proposed due to its high contents of stabilized organic matter and nutrients. The potential of biotransformed DOR to immobilize risk elements in contaminated soils might qualify DOR as a potential risk element stabilization agent for in situ soil reclamation practices. In this experiment, the mobility of risk elements in response to Penicillium chrysogenum-10-transformed DOR, Funalia floccosa-transformed DOR, Bjerkandera adusta-transformed DOR, and Chondrostereum purpureum-transformed DOR as well as arbuscular mycorrhizal fungi (AMF), Funneliformis mosseae, inoculation was investigated. We evaluated the effect of these treatments on risk element uptake by wheat (Triticum aestivum L.) plants in a pot experiment with Cd, Pb, and Zn contaminated soil. The results showed a significant impact of the combined treatment (biotransformed DOR and AMF inoculation) on wheat plant growth and element mobility. The mobile proportions of elements in the treated soils were related to soil pH; with increasing pH levels, Cd, Cu, Fe, Mn, P, Pb, and Zn mobility decreased significantly (r values between -0.36 and -0.46), while Ca and Mg mobility increased (r = 0.63, and r = 0.51, respectively). The application of biotransformed DOR decreased risk element levels (Cd, Zn), and nutrient concentrations (Ca, Cu, Fe, Mg, Mn) in the aboveground biomass, where the elements were retained in the roots. Thus, biotransformed DOR in combination with AMF resulted in a higher capacity of wheat plants to grow under detrimental conditions, being able to accumulate high amounts of risk elements in the roots. However, risk element reduction was insufficient for safe crop production in the extremely contaminated soil.
- MeSH
- kořeny rostlin MeSH
- látky znečišťující půdu * MeSH
- mykorhiza * MeSH
- Olea * MeSH
- půda MeSH
- Publikační typ
- časopisecké články MeSH
Xylem vulnerability to embolism represents an essential trait for the evaluation of the impact of hydraulics in plant function and ecology. The standard centrifuge technique is widely used for the construction of vulnerability curves, although its accuracy when applied to species with long vessels remains under debate. We developed a simple diagnostic test to determine whether the open-vessel artefact influences centrifuge estimates of embolism resistance. Xylem samples from three species with differing vessel lengths were exposed to less negative xylem pressures via centrifugation than the minimum pressure the sample had previously experienced. Additional calibration was obtained from non-invasive measurement of embolism on intact olive plants by X-ray microtomography. Results showed artefactual decreases in hydraulic conductance (k) for samples with open vessels when exposed to a less negative xylem pressure than the minimum pressure they had previously experienced. X-Ray microtomography indicated that most of the embolism formation in olive occurs at xylem pressures below -4.0 MPa, reaching 50% loss of hydraulic conductivity at -5.3 MPa. The artefactual reductions in k induced by centrifugation underestimate embolism resistance data of species with long vessels. A simple test is suggested to avoid this open vessel artefact and to ensure the reliability of this technique in future studies.
- MeSH
- nemoci rostlin * MeSH
- Olea fyziologie MeSH
- voda metabolismus MeSH
- xylém metabolismus fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
Hymenoscyphus fraxineus mitovirus 1 (HfMV1) occurs in the fungus Hymenoscyphus fraxineus, an introduced plant pathogen responsible for the devastating ash dieback epidemic in Europe. Here, we explored the prevalence and genetic structure of HfMV1 to elucidate the invasion history of both the virus and the fungal host. A total of 1298 H. fraxineus isolates (181 from Japan and 1117 from Europe) were screened for the presence of this RNA virus and 301 virus-positive isolates subjected to partial sequence analysis of the viral RNA polymerase gene. Our results indicate a high mean prevalence (78.7%) of HfMV1 across European H. fraxineus isolates, which is supported by the observed high transmission rate (average 83.8%) of the mitovirus into sexual spores of its host. In accordance with an expected founder effect in the introduced population in Europe, only 1.1% of the Japanese isolates were tested virus positive. In Europe, HfMV1 shows low nucleotide diversity but a high number of haplotypes, which seem to be subject to strong purifying selection. Phylogenetic and clustering analysis detected two genetically distinct HfMV1 groups, both present throughout Europe. This pattern supports the hypothesis that only two (mitovirus-carrying) H. fraxineus individuals were introduced into Europe as previously suggested from the bi-allelic nature of the fungus. Moreover, our data points to reciprocal mating events between the two introduced individuals, which presumably initiated the ash dieback epidemic in Europe.
- MeSH
- Ascomycota virologie MeSH
- Fraxinus mikrobiologie MeSH
- fylogeneze MeSH
- genetická variace MeSH
- mykoviry genetika MeSH
- nemoci rostlin mikrobiologie MeSH
- populační genetika * MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
- Japonsko MeSH
Olive oil production is one of the most relevant agroindustrial activities in the Mediterranean region and generates a huge amount of both solid and semi-solid wastes, the uncontrolled disposal of which might lead to serious environmental problems. Due to its organic matter and mineral nutrient content, the waste material can be applied to agricultural soil as a fertilizer. However, due to its high organic matter content, dry olive residue (DOR), commonly called "alperujo," has the potential to immobilize risk elements in contaminated soils. The main objective of this study was to assess the possible effect of DOR on sorption of risk elements such as cadmium (Cd), lead (Pb), and zinc (Zn) in the soil. A set of batch sorption experiments were carried out to assess the ability of DOR to adsorb Cd, Pb, and Zn where the effect of the preceding biotransformation of DOR by four species of fungi: Penicillium chrysogenum, Coriolopsis floccosa, Bjerkhandera adusta, and Chondrostereum purpureum was compared. The Freundlich and Langmuir sorption isotherms were calculated to assess the sorption characteristics of both transformed and non-transformed DOR. The results showed good potential sorption capacity of DOR, especially for Pb and to a lesser extent for Cd and Zn. Better sorption characteristics were reported for the biotransformed DOR samples, which are expected to show higher humification of the organic matter. However, the desorption experiments showed weakness and instability of the DOR-bound elements, especially in the case of Zn. Thus, future research should aim to verify the DOR sorption pattern in contaminated soil as well as the potential stabilization of the DOR element bounds where the increase of the pH levels of the DOR samples needs to be taken into account.
- MeSH
- adsorpce MeSH
- biotransformace MeSH
- houby metabolismus MeSH
- kadmium chemie metabolismus MeSH
- látky znečišťující půdu chemie metabolismus MeSH
- odpadní produkty analýza MeSH
- Olea chemie metabolismus MeSH
- olovo chemie metabolismus MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- zinek chemie metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Středomoří MeSH