BACKGROUND: Immune checkpoint inhibitors (ICIs), including those targeting PD-1, are currently used in a wide range of tumors, but only 20-40% of patients achieve clinical benefit. The objective of our study was to find predictive peripheral blood-based biomarkers for ICI treatment. METHODS: In 41 patients with advanced malignant melanoma (MM) and NSCLC treated with PD-1 inhibitors, we analyzed peripheral blood-based immune subsets by flow cytometry before treatment initialization and the second therapy dose. Specifically, we assessed basic blood differential count, overall T cells and their subgroups, B cells, and myeloid-derived suppressor cells (MDSC). In detail, CD4 + and CD8 + T cells were assessed according to their subtypes, such as central memory T cells (TCM), effector memory T cells (TEM), and naïve T cells (TN). Furthermore, we also evaluated the predictive value of CD28 and ICOS/CD278 co-expression on T cells. RESULTS: Patients who achieved disease control on ICIs had a significantly lower baseline proportion of CD4 + TEM (p = 0.013) and tended to have a higher baseline proportion of CD4 + TCM (p = 0.059). ICI therapy-induced increase in Treg count (p = 0.012) and the proportion of CD4 + TN (p = 0.008) and CD28 + ICOS- T cells (p = 0.012) was associated with disease control. Patients with a high baseline proportion of CD4 + TCM and a low baseline proportion of CD4 + TEM showed significantly longer PFS (p = 0.011, HR 2.6 and p ˂ 0.001, HR 0.23, respectively) and longer OS (p = 0.002, HR 3.75 and p ˂ 0.001, HR 0.15, respectively). Before the second dose, the high proportion of CD28 + ICOS- T cells after ICI therapy initiation was significantly associated with prolonged PFS (p = 0.017, HR 2.51) and OS (p = 0.030, HR 2.69). Also, a high Treg count after 2 weeks of ICI treatment was associated with significantly prolonged PFS (p = 0.016, HR 2.33). CONCLUSION: In summary, our findings suggest that CD4 + TEM and TCM baselines and an early increase in the Treg count induced by PD-1 inhibitors and the proportion of CD28 + ICOS- T cells may be useful in predicting the response in NSCLC and MM patients.
- MeSH
- antigeny CD278 metabolismus MeSH
- antigeny CD279 antagonisté a inhibitory MeSH
- antigeny CD28 MeSH
- CD8-pozitivní T-lymfocyty imunologie účinky léků metabolismus MeSH
- dospělí MeSH
- inhibitory kontrolních bodů * terapeutické užití farmakologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- melanom * farmakoterapie imunologie krev patologie MeSH
- nádory plic * farmakoterapie imunologie krev patologie MeSH
- nemalobuněčný karcinom plic * farmakoterapie imunologie krev patologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Antiphospholipid syndrome (APS) is associated with recurrent pregnancy morbidity, yet the underlying mechanisms remain elusive. We performed multifaceted characterization of the biological and transcriptomic signatures of mouse placenta and uterine natural killer (uNK) cells in APS. Histological analysis of APS placentas unveiled placental abnormalities, including disturbed angiogenesis, occasional necrotic areas, fibrin deposition, and nucleated red blood cell enrichment. Analyses of APS placentas showed a reduced cell proliferation, lower protein content and thinning of endothelial cells. Disturbances in APS trophoblast cells were linked to a cell cycle shift in cytotrophoblast cells, and a reduced number of spiral artery-associated trophoblast giant cells (SpA-TGC). Transcriptomic profiling of placental tissue highlighted disruptions in cell cycle regulation with notable downregulation of genes involved in developmental or signaling processes. Cellular senescence, metabolic and p53-related pathways were also enriched, suggesting potential mechanisms underlying placental dysfunction in APS. Thrombotic events, though occasionally detected, appeared to have no significant impact on the overall pathological changes. The increased number of dysfunctional uNK cells was not associated with enhanced cytotoxic capabilities. Transcriptomic data corroborated these findings, showing prominent suppression of NK cell secretory capacity and cytokine signaling pathways. Our study highlights the multifactorial nature of APS-associated placental pathologies, which involve disrupted angiogenesis, cell cycle regulation, and NK cell functionality.
- MeSH
- antifosfolipidový syndrom * imunologie patologie MeSH
- buňky NK * imunologie metabolismus MeSH
- modely nemocí na zvířatech * MeSH
- myši MeSH
- placenta * metabolismus patologie MeSH
- proliferace buněk MeSH
- stanovení celkové genové exprese MeSH
- těhotenství MeSH
- transkriptom MeSH
- trofoblasty metabolismus patologie imunologie MeSH
- uterus * patologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
While the immunomodulation effects of per- and polyfluoroalkyl substances (PFASs) are described on the level of clinical signs in epidemiological studies (e.g., suppressed antibody response after vaccination), the underlying mechanism has still not been fully elucidated. To reveal mechanisms of PFAS exposure on immunity, we investigated the genome-wide transcriptomic changes of peripheral blood mononuclear cells (PBMCs) responding to PFAS exposure (specifically, exposure to PFPA, PFOA, PFNA, PFDA, PFUnDA, PFHxS, and PFOS). Blood samples and the chemical load in the blood were analyzed under the cross-sectional CELSPAC: Young Adults study. The overall aim of the study was to identify sensitive gene sets and cellular pathways conserved for multiple PFAS chemicals. Transcriptome networks related to adaptive immunity were perturbed by multiple PFAS exposure (i.e., blood levels of at least four PFASs). Specifically, processes tightly connected with late B cell development, such as B cell receptor signaling, germinal center reactions, and plasma cell development, were shown to be affected. Our comprehensive transcriptome analysis identified the disruption of B cell development, specifically the impact on the maturation of antibody-secreting cells, as a potential mechanism underlying PFAS immunotoxicity.
- MeSH
- fluorokarbony * toxicita MeSH
- kyseliny alkansulfonové * MeSH
- látky znečišťující životní prostředí * MeSH
- leukocyty mononukleární MeSH
- lidé MeSH
- mladý dospělý MeSH
- průřezové studie MeSH
- transkriptom MeSH
- Check Tag
- lidé MeSH
- mladý dospělý MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
The gut microbiota influences the reactivity of the immune system, and Parabacteroides distasonis has emerged as an anti-inflammatory commensal. Here, we investigated whether its lysate could prevent severe forms of neuroinflammation in experimental autoimmune encephalomyelitis (EAE) in mice and how this preventive strategy affects the gut microbiota and immune response. Lysate of anaerobically cultured P. distasonis (Pd lysate) was orally administered to C57BL/6 mice in four weekly doses. One week later, EAE was induced and disease severity was assessed three weeks after induction. Fecal microbiota changes in both vehicle- and Pd lysate-treated animals was analyzed by 16S V3-V4 amplicon sequencing and qPCR, antimicrobial peptide expression in the intestinal mucosa was measured by qPCR, and immune cell composition in the mesenteric and inguinal lymph nodes was measured by multicolor flow cytometry. Pd lysate significantly delayed the development of EAE and reduced its severity when administered prior to disease induction. EAE induction was the main factor in altering the gut microbiota, decreasing the abundance of lactobacilli and segmented filamentous bacteria. Pd lysate significantly increased the intestinal abundance of the genera Anaerostipes, Parabacteroides and Prevotella, and altered the expression of antimicrobial peptides in the intestinal mucosa. It significantly increased the frequency of regulatory T cells, induced an anti-inflammatory milieu in mesenteric lymph nodes, and reduced the activation of T cells at the priming site. Pd lysate prevents severe forms of EAE by triggering a T regulatory response and modulating T cell priming to autoantigens. Pd lysate could thus be a future modulator of neuroinflammation that increases the resistance to multiple sclerosis.
- MeSH
- Bacteroidetes imunologie MeSH
- encefalomyelitida autoimunitní experimentální * imunologie prevence a kontrola MeSH
- myši inbrední C57BL * MeSH
- myši MeSH
- střevní mikroflóra * imunologie MeSH
- střevní sliznice imunologie mikrobiologie metabolismus MeSH
- T-lymfocyty imunologie metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Synovial fluid (SF)-derived monocyte-macrophage (MON-Mφ)-lineage cells in knee osteoarthritis (KOA) remain poorly understood. We analyzed SF samples from 420 patients with KOA with effusion. The MON-Mφ cells accounted for 47.4% (median; range 7.1%-94.4%) of CD45+ cells and consisted of four subpopulations that correlated with the distribution and activation of other immune cells. The most abundant subpopulation was that of inactive CD11b+CD14-CD16- myeloid dendritic cells (mDCs; cDC2), which exhibited low cytokine production, low T lymphocyte stimulation, and high migratory ability. Other major subpopulations included CD11b+CD14+CD16- monocyte-like cells and CD11b+CD14+CD16+ macrophages, which share a similar transcriptomic profile. A subpopulation of CD11b-CD14-CD16- mDCs (cDC1) was less common. A higher proportion of CD11b+CD14-CD16- mDCs was linked to early-stage KOA and mild joint pain. Dendritic cells were rarely present in KOA synovium. This study revealed the considerable complexity of SF-derived MON-Mφ subpopulations and highlighted the role of inactive mDCs in KOA.
- MeSH
- artróza kolenních kloubů * patologie metabolismus imunologie MeSH
- buněčný rodokmen MeSH
- dendritické buňky * metabolismus imunologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- makrofágy * metabolismus imunologie MeSH
- monocyty * metabolismus imunologie MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- synoviální tekutina * metabolismus imunologie MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři nad 80 let MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Cyanobacterial harmful blooms (CyanoHABs) pose a global ecological problem, and their lipopolysaccharides (LPS) are among the bioactive compounds they release. Previous studies on CyanoHAB-LPS from single cyanobacterial species have shown varying bioactivities in different in vitro cell models. In this study, we isolated LPS from 19 CyanoHAB samples collected at 18 water bodies in the Czech Republic over two consecutive seasons. The proportions of cyanobacteria, Gram-negative bacteria (G-), and other bacteria in the biomass were determined by qPCR, while the cyanobacterial genera were identified using light microscopy. In vitro models of keratinocytes (HaCaT), the intestinal epithelium (co-culture of differentiated Caco-2 cells and peripheral blood mononuclear cells - PBMC), and PBMC alone were treated with isolated LPS at concentrations of 50, 100, and 1 μg/ml, respectively. The endotoxin activities of these concentrations were within the range measured in the aquatic environment. Approximately 85-90% of the samples displayed biological activity. However, the potency of individual LPS effects and response patterns varied across the different in vitro models. Furthermore, the observed activities did not exhibit a clear correlation with the taxonomic composition of the phytoplankton community, the relative share of microbial groups in the biomass, endotoxin activity of the LPS, or LPS migration and staining pattern in SDS-PAGE. These findings suggest that the effects of CyanoHAB-LPS depend on the specific composition and abundance of various LPS structures within the complex environmental sample and their interactions with cellular receptors.
- MeSH
- biomasa MeSH
- Caco-2 buňky MeSH
- leukocyty mononukleární MeSH
- lidé MeSH
- lipopolysacharidy * toxicita MeSH
- sinice * MeSH
- škodlivý vodní květ MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Exclusive enteral nutrition (EEN) is an effective treatment for active Crohn's disease (CD). This study explored the immunostimulatory potential of a cell-free fecal filtrate and related this with changes in the fecal microbiota and metabolites in children with active CD undertaking treatment with EEN. METHODS: Production of tumor necrosis factor α (TNFα) from peripheral blood mononuclear cells was measured following their stimulation with cell-free fecal slurries from children with CD, before, during, and at completion of EEN. The metabolomic profile of the feces used was quantified using proton nuclear magnetic resonance and their microbiota composition with 16S ribosomal RNA sequencing. RESULTS: Following treatment with EEN, 8 (72%) of 11 patients demonstrated a reduction in fecal calprotectin (FC) >50% and were subsequently labeled FC responders. In this subgroup, TNFα production from peripheral blood mononuclear cells was reduced during EEN (P = .008) and reached levels like healthy control subjects. In parallel to these changes, the fecal concentrations of acetate, butyrate, propionate, choline, and uracil significantly decreased in FC responders, and p-cresol significantly increased. At EEN completion, TNFα production from peripheral blood mononuclear cells was positively correlated with butyrate (rho = 0.70; P = .016). Microbiota structure (β diversity) was influenced by EEN treatment, and a total of 28 microbial taxa changed significantly in fecal calprotectin responders. At EEN completion, TNFα production positively correlated with the abundance of fiber fermenters from Lachnospiraceae_UCG-004 and Faecalibacterium prausnitzii and negatively with Hungatella and Eisenbergiella tayi. CONCLUSIONS: This study offers proof-of concept data to suggest that the efficacy of EEN may result from modulation of diet-dependent microbes and their products that cause inflammation in patients with CD.
- MeSH
- Crohnova nemoc * terapie mikrobiologie imunologie MeSH
- dítě MeSH
- enterální výživa * metody MeSH
- feces * mikrobiologie chemie MeSH
- leukocytární L1-antigenní komplex * analýza MeSH
- leukocyty mononukleární imunologie metabolismus MeSH
- lidé MeSH
- mladiství MeSH
- střevní mikroflóra * MeSH
- TNF-alfa * metabolismus MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- mladiství MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Chimeric antigen receptor (CAR) T-cell therapy has revolutionized the treatment paradigms for hematological malignancies. However, more than half of these patients cannot achieve sustainable tumor control, partially due to the inadequate potency of CAR-T cells in eradicating tumor cells. T cells are crucial components of the anti-tumor immune response, and multiple intrinsic T-cell features significantly influence the outcomes of CAR-T cell therapy. Herein, we review progressing research on T-cell characteristics that impact the effectiveness of CAR-T cells, including T-cell exhaustion, memory subsets, senescence, regulatory T-cells, the CD4+ to CD8+ T-cell ratio, metabolism, and the T-cell receptor repertoire. With comprehensive insight into the biological processes underlying successful CAR-T cell therapy, we will further refine the applications of these novel therapeutic modalities, and enhance their efficacy and safety for patients.
- MeSH
- chimerické antigenní receptory * imunologie MeSH
- hematologické nádory * terapie imunologie MeSH
- imunoterapie adoptivní * metody MeSH
- lidé MeSH
- T-lymfocyty imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Acetaldehyde can be found in human cells as a byproduct of various metabolic pathways, including oxidative processes such as lipid peroxidation. This secondary product of lipid peroxidation plays a role in various pathological processes, leading to various types of civilization diseases. In this study, the formation of free acetaldehyde induced by oxygen-centred radicals was studied in monocyte-like cell line U937. Exposure of U937 cells to peroxyl/alkoxyl radicals induced by azocompound resulted in the formation of free acetaldehyde. Acetaldehyde is formed by the cleavage of fatty acids, which represents the breakdown of fatty acids into smaller fragments initiated by the cyclization of lipid peroxyl radical and β-scission of lipid alkoxyl radical. The cleavage of fatty acids alters the integrity of the plasma and nuclear membrane, leading to the loss of cell viability. Understanding the pathological processes of acetaldehyde formation is an active area of research with potential implications for preventing and treating various diseases associated with oxidative stress.
- MeSH
- acetaldehyd * MeSH
- lidé MeSH
- mastné kyseliny metabolismus MeSH
- monocyty * metabolismus MeSH
- peroxidace lipidů MeSH
- reaktivní formy kyslíku MeSH
- U937 buňky MeSH
- volné radikály metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Activated phosphoinositide 3-kinase delta (PI3Kδ) syndrome (APDS) is an ultra-rare, progressive genetic disease, characterised by immune deficiency and dysregulation, affecting individuals from birth. In a 12-week phase III randomised placebo-controlled trial, leniolisib, a selective PI3Kδ inhibitor, was well-tolerated and met both co-primary endpoints (change from Baseline in log10-transformed sum of product of diameters of index lymph nodes and percentage of naïve/total B cells at Day 85). Here, prespecified subgroup analyses are reported in adolescents aged 12-17 years (leniolisib, n = 8; placebo, n = 4) and adults aged ≥18 (leniolisib, n = 13; placebo, n = 6). In both subgroups, leniolisib reduced lymphadenopathy (least squares mean change versus placebo: adolescents, -0.4 versus -0.1; adults, -0.3 versus 0.1) and increased the percentage of naïve B cells (least squares mean change: adolescents, 44.5 versus -16.5; adults, 28.4 versus -1.1). Leniolisib was well-tolerated in both adolescents and adults. These results show leniolisib is an effective APDS treatment in both subpopulations. PLAIN LANGUAGE SUMMARY: What is activated PI3Kδ syndrome (APDS)? APDS is an ultra-rare disease in which the immune system does not work correctly. People with APDS have a wide range of symptoms, including infections, certain organs associated with the immune system becoming larger, and worse quality of life. These symptoms generally start in childhood. Why was this study carried out? Current treatments only treat the symptoms of APDS, rather than correcting the cause of the problem. These treatments can also have significant side effects. A new medication for APDS called leniolisib aims to treat the underlying cause of the disease. This publication reports results from a clinical trial of leniolisib which compared patients who received leniolisib with patients who received a placebo. The aim of this report was to examine these clinical trial results to understand if leniolisib is effective and safe when treating both adolescents (12-17 years old) and adults (18 years and older) with APDS. What were the results of this study? Leniolisib improved the number of certain immune cells, compared to patients who did not receive leniolisib, in both adolescents and adults with APDS. Leniolisib also reduced the size of the enlarged immune system organs in both adolescents and adults with APDS. There were no major safety concerns for either age group who received leniolisib. What do these results mean? These results show that leniolisib can help the immune system to work in a way that is closer to those without APDS. This new treatment is effective and generally well-tolerated for both adolescents and adults. These results indicate that people with APDS are able to start treatment with leniolisib during adolescence, which may slow the build-up of symptoms and may also have a positive impact on the quality of their lives.
- MeSH
- B-lymfocyty imunologie účinky léků MeSH
- dítě MeSH
- dospělí MeSH
- dvojitá slepá metoda MeSH
- fosfatidylinositol-3-kinasy třídy I * genetika antagonisté a inhibitory MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- primární imunodeficience * farmakoterapie genetika MeSH
- Check Tag
- dítě MeSH
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladiství MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze III MeSH
- randomizované kontrolované studie MeSH