High resistance to environmental factors as well as the ability to form biofilms allow Listeria monocytogenes to persist for a long time in difficult-to-reach places in food-producing plants. L. monocytogenes enters final products from contaminated surfaces in different areas of plants and poses a health risk to consumer. Modified surfaces are already used in the food industry to prevent cross-contamination. In this study, stainless-steel surfaces were coated with nanoscale silicon dioxide and the effects on attachment, bacterial growth and detachment of L. monocytogenes were evaluated. Attachment was considered for three different ways of application to simulate different scenarios of contamination. Bacterial growth of L. monocytogenes on the surface was recorded over a period of up to 8 h. Detachment was tested after cleaning inoculated stainless-steel surfaces with heated distilled water or detergent. Coating stainless-steel surfaces with nanoscale silica tends to reduce adherence and increased detachment and does not influence the bacterial growth of L. monocytogenes. Further modifications of the coating are necessary for a targeted use in the reduction of L. monocytogenes in food-processing plants.
Stainless steel welders are exposed to heavy filler metals. We evaluated the concentration of these metals in whole blood and urine, and the relevant biochemical parameters in relation to the total chromosomal aberrations (CAs), chromatid-type (CTA-type, CTAs) and chromosome-type (CSA-type, CSAs), in 117 welders and control individuals. Statistically higher concentrations of the total Cr, Ni and Mn were observed in whole blood and urine of welders, and the concentrations were higher in welders who smoked. On the contrary, concentrations of urinary heavy metals Cr and Mn adjusted for creatinine were significantly higher in the control groups. A statistically higher frequency of total CAs was observed in the whole group of welders, and also in the non-smoking welders, as compared to controls. The frequency of total CAs significantly correlated with the concentration of Cr, Ni and Mn in whole blood (R=0.61, P˂0.0001, R=0.33, P˂0.0001 and R=0.66, P˂0.0001, respectively), with urinary concentrations of Ni and Mn (R=0.27, P=0.003 and R=0.28, P=0.003, respectively) and with urinary concentrations of Cr, Ni and Mn adjusted for creatinine (R=0.22, P=0.029, R=0.26, P=0.005 and R=0.20, P=0.030, respectively). Likewise, the frequency of CTA-types significantly correlated with the concentration of Cr and Mn in whole blood (R=0.31, P=0.0007 and R=0.34, P=0.0002). The frequency of CSA-types significantly correlated with concentrations of Cr, Ni and Mn in whole blood (R=0.43, P˂0.0001, R=0.38, P˂0.0001 and R=0.46, P˂0.0001, respectively). The statistically higher values of serum creatinine and total bilirubin were detected in all welders, as well as in smokers when compared to the corresponding controls. The exposure to heavy metals in welders increased the frequencies of CAs and altered the balance between urinary excretion of heavy metals and their possible accumulation.
- MeSH
- chrom moč krev MeSH
- chromozomální aberace * chemicky indukované MeSH
- dospělí MeSH
- kouření škodlivé účinky moč krev MeSH
- kreatinin moč krev MeSH
- lidé středního věku MeSH
- lidé MeSH
- mangan moč krev MeSH
- nerezavějící ocel MeSH
- nikl moč krev MeSH
- pracovní expozice * škodlivé účinky analýza MeSH
- studie případů a kontrol MeSH
- svařování * MeSH
- těžké kovy * moč krev MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Interfaces between AISI 304 stainless steel screws and cranial bone were investigated after long-term implantation lasting for 42 years. Samples containing the interface regions were analyzed using state-of-the-art analytical techniques including secondary ion mass, Fourier-transform infrared, Raman, and X-ray photoelectron spectroscopies. Local samples for scanning transmission electron microscopy were cut from the interface regions using the focused ion beam technique. A chemical composition across the interface was recorded in length scales covering micrometric and nanometric resolutions and relevant differences were found between peri-implant and the distant cranial bone, indicating generally younger bone tissue in the peri-implant area. Furthermore, the energy dispersive spectroscopy revealed an 80 nm thick steel surface layer enriched by oxygen suggesting that the AISI 304 material undergoes a corrosion attack. The attack is associated with transport of metallic ions, namely, ferrous and ferric iron, into the bone layer adjacent to the implant. The results comply with an anticipated interplay between released iron ions and osteoclast proliferation. The interplay gives rise to an autocatalytic process in which the iron ions stimulate the osteoclast activity while a formation of fresh bone resorption sites boosts the corrosion process through interactions between acidic osteoclast extracellular compartments and the implant surface. The autocatalytic process thus may account for an accelerated turnover of the peri-implant bone.
- MeSH
- fotoelektronová spektroskopie MeSH
- koroze MeSH
- kostní šrouby * škodlivé účinky MeSH
- lebka * patologie MeSH
- lidé MeSH
- nerezavějící ocel * chemie MeSH
- povrchové vlastnosti MeSH
- Ramanova spektroskopie MeSH
- rozhraní kost/implantát MeSH
- spektroskopie infračervená s Fourierovou transformací MeSH
- železo chemie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Gastroenteritis caused by Campylobacter represents the most common reported foodborne bacterial illness worldwide, followed by salmonellosis. Both diseases are often caused by the consumption of contaminated, insufficiently heated poultry meat. This can result from contamination of the meat during the slaughtering processes. Food contact surfaces like stainless steel or plucking fingers contribute significantly to cross-contamination of poultry carcasses. Modification of these surfaces could lead to a reduction of the bacterial burden, as already proven by successful application in various food industry sectors, such as packaging.In this study, nanoscale silica-coated and uncoated stainless-steel surfaces and plucking fingers were compared on a pilot scale regarding attachment and detachment of Campylobacter jejuni, Salmonella Enteritidis and Escherichia coli.The bacteria did not adhere less to the coated plucking fingers or stainless-steel sections than to the uncoated ones. The coating also did not lead to a significant difference in detachment of Campylobacter jejuni, Salmonella Enteritidis and Escherichia coli from the investigated surfaces compared to the uncoated ones.Our study did not reveal any differences between the coated and uncoated surfaces with regard to the investigated bacteria. In order to achieve a better adaptation of the coating to slaughterhouse conditions, future studies should focus on its further development based on the investigation of specific coating parameters.
- MeSH
- bakteriální adheze * MeSH
- Campylobacter jejuni * účinky léků fyziologie MeSH
- drůbež mikrobiologie MeSH
- Escherichia coli * růst a vývoj fyziologie MeSH
- jatka * MeSH
- kontaminace potravin prevence a kontrola analýza MeSH
- maso mikrobiologie MeSH
- nerezavějící ocel * MeSH
- oxid křemičitý chemie MeSH
- potravinářská mikrobiologie MeSH
- Salmonella enteritidis * účinky léků fyziologie růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Biocompatibility is one of the key issues for implants, especially in the case of stainless steel with medium to low biocompatibility, which may lead to a lack of osseointegration and consequently to implant failure or rejection. To precisely control preferential cell growth sites and, consequently, the biocompatibility of prosthetic devices, two types of surfaces were analyzed, containing periodic nanogrooves laser induced periodic surface structure (LIPSS) and square-shaped micropillars. For the fast and efficient production of these surfaces, the unique combination of high energy ultrashort pulsed laser system with multi-beam and beamshaping technology was applied, resulting in increased productivity by 526% for micropillars and 14 570% for LIPSS compared to single beam methods.In vitroanalysis revealed that micro and nanostructured surfaces provide a better environment for cell attachment and proliferation compared to untreated ones, showing an increase of up to 496% in the number of cells compared to the reference. Moreover, the combination of LIPSS and micropillars resulted in a precise cell orientation along the periodic microgroove pattern. The combination of these results demonstrates the possibility of mass production of functionalized implants with control over cell organization and growth. Thus, reducing the risk of implant failure due to low biocompatibility.
Bacillus toyonensis (a Gram-positive bacterium) and Pseudomonas aeruginosa (a Gram-negative bacterium) isolated from the different surfaces of a dairy plant in our previous study were selected as the test bacteria for the present study. These two test bacteria were investigated in terms of their attachment on the stainless steel test surfaces in a model dairy batch system. After incubation at 5 °C and 20 °C for 6 h, 12 h, and 24 h, stainless steel plates were examined using cultural counts, profilometer, scanning electron microscopy (SEM), and fluorescent microscopy. Also, the test plates were subjected to a cleaning/disinfection procedure used in the dairy plant. Tests were employed before and after the cleaning/disinfection procedures. Cell wall characteristics and holding temperature were found to be significant for the attachment of the test bacteria to stainless steel test surfaces. In the study, the effect of the holding temperature varied depending on the type and characteristics of the bacteria. The adhesion ability of P. aeruginosa was higher than that of B. toyonensis. Increases in the holding temperature may increase the adhesion ability of the bacteria. Milk growth medium was found to be more successful in preventing the attachment ability of P. aeruginosa compared to B. toyonensis. This indicates that the chemical characteristic of the contact material may affect adhesion. The adhered bacterial cells were entirely removed by means of the cleaning/disinfection treatment. Therefore, the adhesion of bacterial cells could be explained as "initial phase of biofilm formation." It can be concluded that the microorganism cell adhesion on the surface is followed by biofilm formation, and this situation lasts for many years. These results reveal the importance of controlling biofilm formation in dairy plants from the beginning.
- MeSH
- Bacillus MeSH
- bakteriální adheze MeSH
- biofilmy MeSH
- nerezavějící ocel * MeSH
- Pseudomonas aeruginosa * MeSH
- Publikační typ
- časopisecké články MeSH
Biofilm formation (BF) and production in the food processing industry (FPI) is a continual threat to food safety and quality. Various bacterial pathogens possess the ability to adhere and produce biofilms on stainless steel (SS) in the FPI due to flagella, curli, pili, fimbrial adhesins, extra polymeric substances, and surface proteins. The facilitating environmental conditions (temperature, pressure, variations in climatic conditions), SS properties (surface energy, hydrophobicity, surface roughness, topography), type of raw food materials, pre-processing, and processing conditions play a significant role in the enhancement of bacterial adhesion and favorable condition for BF. Furthermore, biofilm formers can tolerate different sanitizers and cleaning agents due to the constituents, concentration, contact time, bacterial cluster distribution, and composition of bacteria within the biofilm. Also, bacterial biofilms' ability to produce various endotoxins and exotoxins when consumed cause food infections and intoxications with serious health implications. It is thus crucial to understand BF's repercussions and develop effective interventions against these phenomena that make persistent pathogens difficult to remove in the food processing environment.
- MeSH
- bakteriální adheze MeSH
- bakteriální infekce prevence a kontrola přenos MeSH
- biofilmy * růst a vývoj MeSH
- dezinfekce MeSH
- fyziologie bakterií * MeSH
- lidé MeSH
- manipulace s potravinami * přístrojové vybavení normy MeSH
- nerezavějící ocel * MeSH
- potravinářská mikrobiologie * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
OBJECTIVE: Antineoplastic drugs (ADs) pose risks to healthcare staff. Surface disinfectants are used in hospitals to prevent microbial contamination but the efficiency of disinfectants to degrade ADs is not known. We studied nine disinfectants on ten ADs in the standardized laboratory and realistic in situ hospital conditions. METHODS: A survey in 43 hospitals prioritized nine most commonly used disinfections based on different ingredients. These were tested on inert stainless steel and in situ on contaminated hospital flooring. The effects against ten ADs were studied by LC-MS/MS (Cyclophosphamide CP; Ifosfamide IF; Capecitabine CAP; Sunitinib SUN; Methotrexate MET; Doxorubicin DOX; Irinotecan IRI; Paclitaxel PX; 5-Fluorouracil FU) and ICP-MS (Pt as a marker of platinum-based ADs). RESULTS: Monitoring of the floor contamination in 26 hospitals showed that the most contaminated are the outpatient clinics that suffer from a large turnover of staff and patients and have limited preventive measures. The most frequent ADs were Pt, PX, FU and CP with maxima exceeding the recommended 1 ng/cm2 limit by up to 140 times. IRI, FU, MET, DOX and SUN were efficiently removed by hydrolysis in clean water and present thus lower occupational risk. Disinfectants based on hydrogen peroxide were efficient against PX and FU (> 70% degradation) but less against other ADs, such as carcinogenic CP or IF, IRI and CAP. The most efficient were the active chlorine and peracetic acid-based products, which however release irritating toxic vapors. The innovative in situ testing of ADs previously accumulated in hospital flooring showed highly problematic removal of carcinogenic CP and showed that alcohol-based disinfectants may mobilize persistent ADs contamination from deeper floor layers. CONCLUSION: Agents based on hydrogen peroxide, peracetic acid, quaternary ammonium salts, glutaraldehyde, glucoprotamine or detergents can be recommended for daily use for both disinfection and AD decontamination. However, they have variable efficiencies and should be supplemented by periodic use of strong chlorine-based disinfectants efficient also against the carcinogenic and persistent CP.
- MeSH
- dekontaminace metody MeSH
- detergenty MeSH
- dezinficiencia * MeSH
- diaminy MeSH
- glutaraldehyd MeSH
- kontaminace zdravotnického vybavení MeSH
- kvartérní amoniové sloučeniny MeSH
- kyselina peroctová MeSH
- laboratoře MeSH
- nemocnice MeSH
- nerezavějící ocel MeSH
- peroxid vodíku MeSH
- podlahy a podlahové krytiny MeSH
- protinádorové látky * MeSH
- pyrrolidinony MeSH
- Publikační typ
- časopisecké články MeSH
Incomplete endothelialization of intracoronary stents has been associated with stent thrombosis and recurrent symptoms, whereas prolonged use of dual antiplatelet therapy increases bleeding-related adverse events. Facilitated endothelialization has the potential to improve clinical outcomes in patients who are unable to tolerate dual antiplatelet therapy. The objective of this study was to demonstrate the feasibility of magnetic cell capture to rapidly endothelialize intracoronary stents in a large animal model. A novel stent was developed from a magnetizable duplex stainless steel (2205 SS). Polylactic-co-glycolic acid and magnetite (Fe3O4) were used to synthesize biodegradable superparamagnetic iron oxide nanoparticles, and these were used to label autologous blood outgrowth endothelial cells. Magnetic 2205 SS and nonmagnetic 316L SS control stents were implanted in the coronary arteries of pigs (n = 11), followed by intracoronary delivery of magnetically labeled cells to 2205 SS stents. In this study, we show extensive endothelialization of magnetic 2205 SS stents (median 98.4% cell coverage) within 3 days, whereas the control 316L SS stents exhibited significantly less coverage (median 48.9% cell coverage, p < 0.0001). This demonstrates the ability of intracoronary delivery of magnetic nanoparticle labeled autologous endothelial cells to improve endothelialization of magnetized coronary stents within 3 days of implantation.
- MeSH
- endoteliální buňky cytologie účinky léků ultrastruktura MeSH
- fenotyp MeSH
- kovy chemie MeSH
- nanočástice chemie ultrastruktura MeSH
- nerezavějící ocel farmakologie MeSH
- prasata MeSH
- stenty * MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
When choosing between metal implants of different materials the surgeon mainly needs to balance the pros and cons of steel and titanium. Economic constraints often do not permit both to be kept in stock and it is necessary to decide beforehand which to choose. The arguments for the use of the "preferred metal" vary. The present paper elucidates the practical aspects based on the complex scientific background that has identified the differences between the two metals in their mechanical, electrochemical, biological and application behavior. The data presented here are intended to help the surgeon when he is confronted with different and often complex clinical situations and problems. The following is an overview of different aspects to help with selection of the proper material for the clinical application. The first part concerns mechanical aspects the second part the biological aspects. Both aspects are discussed with the practical application in mind. Nonmetallic implant materials have seen an increasing interest in the recent past. Plastic materials needed improvement to achieve good strength and avoid creep with loss of e.g. compression and minimizing leakage of chemicals.
- MeSH
- biomechanika MeSH
- lidé MeSH
- ocel MeSH
- ortopedické výkony přístrojové vybavení MeSH
- protézy a implantáty * MeSH
- testování materiálů MeSH
- titan MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH