BACKGROUND & AIMS: It is important to increase our understanding of gustatory detection of dietary fat and its contribution to fat preference. We studied the roles of the fat taste receptors CD36 and GPR120 and their interactions via Ca(2+) signaling in fungiform taste bud cells (TBC). METHODS: We measured Ca(2+) signaling in human TBC, transfected with small interfering RNAs against messenger RNAs encoding CD36 and GPR120 (or control small interfering RNAs). We also studied Ca(2+) signaling in TBC from CD36(-/-) mice and from wild-type lean and obese mice. Additional studies were conducted with mouse enteroendocrine cell line STC-1 that express GPR120 and stably transfected with human CD36. We measured release of serotonin and glucagon-like peptide-1 from human and mice TBC in response to CD36 and GPR120 activation. RESULTS: High concentrations of linoleic acid induced Ca(2+) signaling via CD36 and GPR120 in human and mice TBC, as well as in STC-1 cells, and low concentrations induced Ca(2+) signaling via only CD36. Incubation of human and mice fungiform TBC with lineoleic acid down-regulated CD36 and up-regulated GPR120 in membrane lipid rafts. Obese mice had decreased spontaneous preference for fat. Fungiform TBC from obese mice had reduced Ca(2+) and serotonin responses, but increased release of glucagon-like peptide-1, along with reduced levels of CD36 and increased levels of GPR120 in lipid rafts. CONCLUSIONS: CD36 and GPR120 have nonoverlapping roles in TBC signaling during orogustatory perception of dietary lipids; these are differentially regulated by obesity.
- MeSH
- antigeny CD36 nedostatek genetika metabolismus MeSH
- buněčné linie MeSH
- chování zvířat MeSH
- chuť * MeSH
- chuťová percepce MeSH
- chuťové pohárky metabolismus MeSH
- dieta s vysokým obsahem tuků MeSH
- glukagonu podobný peptid 1 metabolismus MeSH
- inositol-1,4,5-trisfosfát metabolismus MeSH
- kyselina linolová metabolismus MeSH
- lidé MeSH
- membránové mikrodomény metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- obezita genetika metabolismus psychologie MeSH
- preference v jídle MeSH
- receptory spřažené s G-proteiny nedostatek genetika metabolismus MeSH
- RNA interference MeSH
- serotonin metabolismus MeSH
- transfekce MeSH
- vápníková signalizace * MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Dexamethasone (DEX) is known to induce diabetes and dyslipidemia. We have compared fasting triacylglycerol and cholesterol concentrations across 20 lipoprotein fractions and glucose tolerance in control (standard diet) and DEX-treated 7-month-old males of two rat strains, Brown Norway (BN) and congenic BN.SHR-(Il6-Cd36)/Cub (BN.SHR4). These two inbred strains differ in a defined segment of chromosome 4, originally transferred from the spontaneously hypertensive rat (SHR) including the mutant Cd36 gene, a known target of DEX. Compared to BN, the standard-diet-fed BN.SHR4 showed higher cholesterol and triacylglycerol concentrations across many lipoprotein fractions, particularly in small VLDL and LDL particles. Total cholesterol was decreased by DEX by more than 21% in BN.SHR4 contrasting with the tendency to increase in BN (strain*DEX interaction p = 0.0017). Similar pattern was observed for triacylglycerol concentrations in LDL. The LDL particle size was significantly reduced by DEX in both strains. Also, while control BN and BN.SHR4 displayed comparable glycaemic profiles during oral glucose tolerance test, we observed a markedly blunted DEX induction of glucose intolerance in BN.SHR4 compared to BN. In summary, we report a pharmacogenetic interaction between limited genomic segment with mutated Cd36 gene and dexamethasone-induced glucose intolerance and triacylglycerol and cholesterol redistribution into lipoprotein fractions.
- MeSH
- antigeny CD36 nedostatek genetika MeSH
- cholesterol metabolismus MeSH
- chromozomy metabolismus MeSH
- dexamethason farmakologie MeSH
- farmakogenetika MeSH
- krysa rodu rattus MeSH
- lipoproteiny chemie MeSH
- mutace MeSH
- omezení příjmu potravy MeSH
- porucha glukózové tolerance MeSH
- potkani inbrední SHR MeSH
- triglyceridy metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH