Nitric oxide (NO)-stimulated cyclic guanosine monophosphate (cGMP) is a key regulator of cardiovascular health, as NO-cGMP signalling is impaired in diseases like pulmonary hypertension, heart failure and chronic kidney disease. The development of NO-independent sGC stimulators and activators provide a novel therapeutic option to restore altered NO signalling. sGC stimulators have been already approved for the treatment of pulmonary arterial hypertension (PAH), chronic thromboembolic pulmonary hypertension (CTEPH), and chronic heart failure (HFrEF), while sGC activators are currently in phase-2 clinical trials for CKD. The best characterized effect of increased cGMP via the NO-sGC-cGMP pathway is vasodilation. However, to date, none of the sGC agonists are in development for hypertension (HTN). According to WHO, the global prevalence of uncontrolled HTN continues to rise, contributing significantly to cardiovascular mortality. While there are effective antihypertensive treatments, many patients require multiple drugs, and some remain resistant to all therapies. Thus, in addition to improved diagnosis and lifestyle changes, new pharmacological strategies remain in high demand. In this review we explore the potential of sGC stimulators and activators as novel antihypertensive agents, starting with the overview of NO-sGC-cGMP signalling, followed by potential mechanisms by which the increase in cGMP may regulate vascular tone and BP. These effects may encompass not only acute vasodilation, but also mid-term and chronic effects, such as the regulation of salt and water balance, as well as mitigation of vascular ageing and remodelling. The main section summarizes the preclinical and clinical evidence supporting the BP-lowering efficacy of sGC agonists.
- MeSH
- agonisté guanylátcyklázy terapeutické užití farmakologie MeSH
- aktivátory enzymů terapeutické užití farmakologie MeSH
- antihypertenziva * terapeutické užití farmakologie MeSH
- guanosinmonofosfát cyklický * metabolismus MeSH
- hypertenze * farmakoterapie patofyziologie MeSH
- lidé MeSH
- oxid dusnatý metabolismus MeSH
- rozpustná guanylátcyklasa * metabolismus MeSH
- signální transdukce účinky léků MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
OBJECTIVE: To examine disease and target engagement biomarkers in the RISE-SSc trial of riociguat in early diffuse cutaneous systemic sclerosis and their potential to predict the response to treatment. METHODS: Patients were randomized to riociguat (n = 60) or placebo (n = 61) for 52 weeks. Skin biopsies and plasma/serum samples were obtained at baseline and week 14. Plasma cyclic guanosine monophosphate (cGMP) was assessed using radio-immunoassay. α-Smooth muscle actin (αSMA) and skin thickness were determined by immunohistochemistry, mRNA markers of fibrosis by qRT-PCR in skin biopsies, and serum CXC motif chemokine ligand 4 (CXCL-4) and soluble platelet endothelial cell adhesion molecule-1 (sPECAM-1) by enzyme-linked immunosorbent assay. RESULTS: By week 14, cGMP increased by 94 (78)% with riociguat and 10 (39)% with placebo (P < 0.001, riociguat vs placebo). Serum sPECAM-1 and CXCL-4 decreased with riociguat vs placebo (P = 0.004 and P = 0.008, respectively). There were no differences in skin collagen markers between the two groups. Higher baseline serum sPECAM-1 or the detection of αSMA-positive cells in baseline skin biopsies was associated with a larger reduction of modified Rodnan skin score from baseline at week 52 with riociguat vs placebo (interaction P-values 0.004 and 0.02, respectively). CONCLUSION: Plasma cGMP increased with riociguat, suggesting engagement with the nitric oxide-soluble guanylate cyclase-cGMP pathway. Riociguat was associated with a significant reduction in sPECAM-1 (an angiogenic biomarker) vs placebo. Elevated sPECAM-1 and the presence of αSMA-positive skin cells may help to identify patients who could benefit from riociguat in terms of skin fibrosis. TRIAL REGISTRATION: Clinicaltrials.gov, NCT02283762.
- MeSH
- biologické markery * krev MeSH
- biopsie MeSH
- difuzní sklerodermie * farmakoterapie patologie MeSH
- dospělí MeSH
- dvojitá slepá metoda MeSH
- fibróza farmakoterapie MeSH
- guanosinmonofosfát cyklický krev metabolismus MeSH
- kůže * patologie účinky léků metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- pyrazoly * terapeutické užití MeSH
- pyrimidiny * terapeutické užití MeSH
- výsledek terapie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- klinické zkoušky, fáze II MeSH
- randomizované kontrolované studie MeSH
Substituted catechols include both natural and synthetic compounds found in the environment and foods. Some of them are flavonoid metabolites formed by the gut microbiota which are absorbed afterwards. Our previous findings showed that one of these metabolites, 4-methylcatechol, exerts potent vasorelaxant effects in rats. In the current study, we aimed at testing of its 22 structural congeners in order to find the most potent structure and to investigate the mechanism of action. 3-methoxycatechol (3-MOC), 4-ethylcatechol, 3,5-dichlorocatechol, 4-tert-butylcatechol, 4,5-dichlorocatechol, 3-fluorocatechol, 3-isopropylcatechol, 3-methylcatechol and the parent 4-methylcatechol exhibited high vasodilatory activities on isolated rat aortic rings with EC50s ranging from ∼10 to 24 μM. Some significant sex-differences were found. The most potent compound, 3-MOC, relaxed also resistant mesenteric artery but not porcine coronary artery, and decreased arterial blood pressure in both male and female spontaneously hypertensive rats in vivo without affecting heart rate. It potentiated the vasodilation mediated by cAMP and cGMP, but did not impact L-type Ca2+-channels. By using two inhibitors, activation of voltage-gated potassium channels (KV) was found to be involved in the mechanism of action. This was corroborated by docking analysis of 3-MOC with the KV7.4 channel. None of the most active catechols decreased the viability of the A-10 rat embryonic thoracic aorta smooth muscle cell line. Our findings showed that various catechols can relax vascular smooth muscles and hence could provide templates for developing new antihypertensive vasodilator agents without affecting coronary circulation.
- MeSH
- aorta thoracica účinky léků metabolismus MeSH
- arteriae mesentericae * účinky léků metabolismus MeSH
- arteriální tlak účinky léků MeSH
- draslíkové kanály řízené napětím metabolismus antagonisté a inhibitory účinky léků MeSH
- guanosinmonofosfát cyklický metabolismus MeSH
- hypertenze farmakoterapie patofyziologie metabolismus MeSH
- katecholy * farmakologie chemie MeSH
- koronární cévy účinky léků metabolismus MeSH
- krysa rodu rattus MeSH
- modely nemocí na zvířatech MeSH
- myocyty hladké svaloviny účinky léků metabolismus MeSH
- potkani inbrední SHR * MeSH
- prasata MeSH
- sexuální faktory MeSH
- simulace molekulového dockingu * MeSH
- svaly hladké cévní účinky léků metabolismus MeSH
- vazodilatace * účinky léků MeSH
- vazodilatancia * farmakologie chemie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Heart failure (HF) has been declared as global pandemic and current therapies are still ineffective, especially in patients that develop concurrent cardio-renal syndrome. Considerable attention has been focused on the nitric oxide (NO)/soluble guanylyl cyclase (sGC)/cyclic guanosine monophosphate (cGMP) pathway. In the current study, we aimed to investigate the effectiveness of sGC stimulator (BAY41-8543) with the same mode of action as vericiguat, for the treatment of heart failure (HF) with cardio-renal syndrome. As a model, we chose heterozygous Ren-2 transgenic rats (TGR), with high-output heart failure, induced by aorto-caval fistula (ACF). The rats were subjected into three experimental protocols to evaluate short-term effects of the treatment, impact on blood pressure, and finally the long-term survival lasting 210 days. As control groups, we used hypertensive sham TGR and normotensive sham HanSD rats. We have shown that the sGC stimulator effectively increased the survival of rats with HF in comparison to untreated animals. After 60 days of sGC stimulator treatment, the survival was still 50% compared to 8% in the untreated rats. One-week treatment with sGC stimulator increased the excretion of cGMP in ACF TGR (109 ± 28 nnmol/12 h), but the ACE inhibitor decreased it (-63 ± 21 nnmol/12 h). Moreover, sGC stimulator caused a decrease in SBP, but this effect was only temporary (day 0: 117 ± 3; day 2: 108 ± 1; day 14: 124 ± 2 mmHg). These results support the concept that sGC stimulators might represent a valuable class of drugs to battle heart failure especially with cardio-renal syndrome, but further studies are necessary.
- MeSH
- guanosinmonofosfát cyklický metabolismus MeSH
- guanylátcyklasa MeSH
- hypertenze * farmakoterapie MeSH
- kardiorenální syndrom * MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- oxid dusnatý metabolismus MeSH
- píštěle * MeSH
- potkani transgenní MeSH
- rozpustná guanylátcyklasa metabolismus MeSH
- srdeční selhání * farmakoterapie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Stimulator of interferon genes (STING) binds cyclic dinucleotides (CDNs), which induce a large conformational change of the protein. The structural basis of activation of STING by CDNs is rather well understood. Unliganded STING forms an open dimer that undergoes a large conformational change (∼10 Å) to a closed conformation upon the binding of a CDN molecule. This event activates downstream effectors of STING and subsequently leads to activation of the type 1 interferon response. However, a previously solved structure of STING with 3',3'-c-di-GMP shows Mg atoms mediating the interaction of STING with this CDN. Here, it is shown that no Mg atoms are needed for this interaction; in fact, magnesium can in some cases obstruct the binding of a CDN to STING.
The endothelial barrier function is tightly controlled by a broad range of signaling cascades including nitric oxide-cyclic guanosine monophosphate (NO-cGMP) pathway. It has been proposed that disturbances in NO and cGMP production could interfere with proper endothelial barrier function. In this study, we assessed the effect of interferon-gamma (IFN-gamma), a pro-inflammatory cytokine, on NO and cGMP levels and examined the mechanisms by which NO and cGMP regulate the IFN-gamma-mediated HUVECs hyperpermeability. The flux of fluorescein isothiocyanate-labeled dextran across cell monolayers was used to study the permeability of endothelial cells. Here, we found that IFN-gamma significantly attenuated basal NO concentration and the increased NO levels supplied by a NO donor, sodium nitroprusside (SNP). Besides, application of IFN-gamma also significantly attenuated both the basal cGMP concentration and the increased cGMP production donated by a cell permeable cGMP analogue, 8-bromo-cyclic GMP (8-Br-cGMP). In addition, exposure of the cell monolayer to IFN-gamma significantly increased HUVECs basal permeability. However, L-NAME pretreatment did not suppress IFN-gamma-induced HUVECs hyperpermeability. L-NAME pretreatment followed by SNP or SNP pretreatment partially reduced IFN-gamma-induced HUVECs hyperpermeability. Pretreatment with a guanylate cyclase inhibitor, 6-anilino-5,8-quinolinedione (LY83583), led to a further increase in IFN-gamma-induced HUVECs hyperpermeability. The findings suggest that the mechanism underlying IFN-gamma-induced increased HUVECs permeability is partly related to the inhibition of NO production.
- MeSH
- donory oxidu dusnatého farmakologie MeSH
- endoteliální buňky pupečníkové žíly (lidské) účinky léků metabolismus MeSH
- guanosinmonofosfát cyklický analogy a deriváty metabolismus farmakologie MeSH
- guanylátcyklasa antagonisté a inhibitory MeSH
- inhibitory enzymů farmakologie MeSH
- interferon gama farmakologie MeSH
- kapilární permeabilita účinky léků MeSH
- lidé MeSH
- NG-nitroargininmethylester farmakologie MeSH
- nitroprusid farmakologie MeSH
- oxid dusnatý metabolismus MeSH
- permeabilita buněčné membrány MeSH
- Check Tag
- lidé MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Reduced nitric oxide (NO)/cGMP signalling is observed in age-related vascular disease. We hypothesize that this disturbed signalling involves effects of genomic instability, a primary causal factor in aging, on vascular smooth muscle cells (VSMCs) and that the underlying mechanism plays a role in human age-related vascular disease. To test our hypothesis, we combined experiments in mice with genomic instability resulting from the defective nucleotide excision repair gene ERCC1 (Ercc1(d/-) mice), human VSMC cultures and population genome-wide association studies (GWAS). Aortic rings of Ercc1(d/-) mice showed 43% reduced responses to the soluble guanylate cyclase (sGC) stimulator sodium nitroprusside (SNP). Inhibition of phosphodiesterase (PDE) 1 and 5 normalized SNP-relaxing effects in Ercc1(d/-) to wild-type (WT) levels. PDE1C levels were increased in lung and aorta. cGMP hydrolysis by PDE in lungs was higher in Ercc1(d/-) mice. No differences in activity or levels of cGMP-dependent protein kinase 1 or sGC were observed in Ercc1(d/-) mice compared with WT. Senescent human VSMC showed elevated PDE1A and PDE1C and PDE5 mRNA levels (11.6-, 9- and 2.3-fold respectively), which associated with markers of cellular senescence. Conversely, PDE1 inhibition lowered expression of these markers. Human genetic studies revealed significant associations of PDE1A single nucleotide polymorphisms with diastolic blood pressure (DBP; β=0.28, P=2.47×10(-5)) and carotid intima-media thickness (cIMT; β=-0.0061, P=2.89×10(-5)). In summary, these results show that genomic instability and cellular senescence in VSMCs increase PDE1 expression. This might play a role in aging-related loss of vasodilator function, VSMC senescence, increased blood pressure and vascular hypertrophy.
- MeSH
- arteriae carotides enzymologie patologie MeSH
- celogenomová asociační studie MeSH
- cyklické nukleotidfosfodiesterasy, typ 1 antagonisté a inhibitory genetika metabolismus MeSH
- cyklické nukleotidfosfodiesterasy, typ 5 genetika metabolismus MeSH
- DNA vazebné proteiny nedostatek genetika MeSH
- endonukleasy nedostatek genetika MeSH
- fenotyp MeSH
- genetická predispozice k nemoci MeSH
- guanosinmonofosfát cyklický metabolismus MeSH
- hydrolýza MeSH
- hyperplazie MeSH
- hypertenze enzymologie genetika patofyziologie MeSH
- inhibitory fosfodiesterasy 5 farmakologie MeSH
- intimomediální šíře tepenné stěny MeSH
- jednonukleotidový polymorfismus MeSH
- krevní tlak MeSH
- kultivované buňky MeSH
- lidé MeSH
- myocyty hladké svaloviny účinky léků enzymologie MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- nemoci arterie carotis enzymologie genetika patologie MeSH
- regulace genové exprese u nádorů MeSH
- stárnutí buněk MeSH
- stárnutí genetika metabolismus MeSH
- svaly hladké cévní účinky léků enzymologie MeSH
- systémy druhého messengeru MeSH
- techniky in vitro MeSH
- vazodilatace * účinky léků MeSH
- vazodilatancia farmakologie MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The effect of adipokinetic hormone (Pyrap-AKH) in stimulating the function of insect salivary glands (SGs) in extra-oral digestive processes was studied in the firebug, Pyrrhocoris apterus L. (Heteroptera). The analyses were performed on samples of SGs and extracts of linden seeds, a natural source of the bug's food. The SGs from 3-day old P. apterus females (when the food ingestion culminates), primarily contained polygalacturonase (PG) enzyme activity, whereas the level of lipase, peptidase, amylase and α-glucosidase was negligible. The transcription of PG mRNA and enzymatic activity were significantly increased in SGs after Pyrap-AKH treatment. The piercing and sucking of linden seeds by the bugs stimulated the intrinsic enzymatic cocktail of seeds (lipase, peptidase, amylase, glucosidase), and moreover the activity of these enzymes was significantly enhanced when the seeds were fed on by the Pyrap-AKH treated bugs. Similarly, a significant increase in PG activity was recorded in linden seeds fed on by hormonally-treated bugs or when injected by SG extract from hormonally treated ones as compared to untreated controls. The mechanism of AKH action in SGs is unknown, but likely involves cAMP (and excludes cGMP) as a second messenger, since the content of this compound doubled in SGs after Pyrap-AKH treatment. This new and as yet undescribed function of AKH in SGs is compared with the effect of this hormone on digestive processes in the midgut elucidated earlier.
- MeSH
- AMP cyklický metabolismus MeSH
- guanosinmonofosfát cyklický metabolismus MeSH
- Heteroptera fyziologie MeSH
- hmyzí hormony fyziologie MeSH
- kyselina pyrrolidonkarboxylová analogy a deriváty MeSH
- modely u zvířat * MeSH
- oligopeptidy fyziologie MeSH
- slinné žlázy enzymologie MeSH
- trávení MeSH
- zvířata MeSH
- Check Tag
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Essential hypertension is a multifactorial disorder which belongs to the main risk factors responsible for renal and cardiovascular complications. This review is focused on the experimental research of neural and vascular mechanisms involved in the high blood pressure control. The attention is paid to the abnormalities in the regulation of sympathetic nervous system activity and adrenoceptor alterations as well as the changes of membrane and intracellular processes in the vascular smooth muscle cells of spontaneously hypertensive rats. These abnormalities lead to increased vascular tone arising from altered regulation of calcium influx through L-VDCC channels, which has a crucial role for excitation-contraction coupling, as well as for so-called "calcium sensitization" mediated by the RhoA/Rho-kinase pathway. Regulation of both pathways is dependent on the complex interplay of various vasodilator and vasoconstrictor stimuli. Two major antagonistic players in the regulation of blood pressure, i.e. sympathetic nervous system (by stimulation of adrenoceptors coupled to stimulatory and inhibitory G proteins) and nitric oxide (by cGMP signaling pathway), elicit their actions via the control of calcium influx through L-VDCC. However, L-type calcium current can also be regulated by the changes in membrane potential elicited by the activation of potassium channels, the impaired function of which was detected in hypertensive animals. The dominant role of enhanced calcium influx in the pathogenesis of high blood pressure of genetically hypertensive animals is confirmed not only by therapeutic efficacy of calcium antagonists but especially by the absence of hypertension in animals in which L-type calcium current was diminished by pertussis toxin-induced inactivation of inhibitory G proteins. Although there is considerable information on the complex neural and vascular alterations in rats with established hypertension, the detailed description of their appearance during the induction of hypertension is still missing.
- MeSH
- adrenergní receptory fyziologie MeSH
- cévní endotel patofyziologie MeSH
- guanosinmonofosfát cyklický metabolismus MeSH
- hypertenze metabolismus patofyziologie MeSH
- krevní tlak fyziologie MeSH
- lidé MeSH
- membránové potenciály MeSH
- svaly hladké cévní fyziologie MeSH
- sympatický nervový systém patofyziologie MeSH
- vápník metabolismus MeSH
- vápníkové kanály - typ L metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
OBJECTIVES: Our goal was to examine the role of B-type natriuretic peptide (BNP) in lipolysis regulation in heart failure (HF) patients. BACKGROUND: Enhanced adipose tissue lipolysis can contribute to myocardial lipid overload, insulin resistance, and cachexia in advanced HF. Natriuretic peptides were recently recognized to stimulate lipolysis in healthy subjects. METHODS: Ten nondiabetic HF patients (New York Heart Association functional class III, 50% nonischemic etiology) and 13 healthy subjects (control subjects) of similar age, sex, and body composition underwent a microdialysis study of subcutaneous abdominal adipose tissue. Four microdialysis probes were simultaneously perfused with 0.1 μM BNP(1-32,) 10 μM BNP(1-32), 10 μM norepinephrine (NE) or Ringer's solution. Outgoing dialysate glycerol concentration (DGC) was measured as an index of lipolysis. RESULTS: Spontaneous lipolysis was higher in HF patients compared with control subjects (DGC: 189 ± 37 μmol/l vs. 152 ± 35 μmol/l, p < 0.01). Response to NE was similar (p = 0.35) in HF patients and control subjects (DGC increase of 1.7 ± 0.2-fold vs. 1.7 ± 0.4-fold). BNP(1-32) 10 μM markedly increased lipolysis in both HF patients and control subjects (DGC increase of 2.8 ± 0.5-fold vs. 3.2 ± 0.3-fold), whereas the response to 0.1 μM BNP(1-32) was more pronounced in HF patients (p = 0.02). In HF patients, spontaneous lipolysis positively correlated with insulin resistance and the response to BNP(1-32) negatively correlated with adiposity. CONCLUSIONS: BNP(1-32) exerts strong lipolytic effects in humans. Despite marked elevation of plasma immunoreactive BNP, the responsiveness of adipose tissue to BNP(1-32) is not attenuated in HF, possibly reflecting a deficiency of endogenous bioactive BNP. Lipolytic effects of BNP can contribute to excessive fatty acid mobilization in advanced HF.
- MeSH
- extracelulární tekutina metabolismus MeSH
- guanosinmonofosfát cyklický metabolismus MeSH
- lidé středního věku MeSH
- lidé MeSH
- lipolýza MeSH
- mikrodialýza MeSH
- natriuretický peptid typu B aplikace a dávkování metabolismus MeSH
- noradrenalin aplikace a dávkování metabolismus MeSH
- podkožní břišní tuk krevní zásobení metabolismus MeSH
- regionální krevní průtok MeSH
- srdeční selhání metabolismus MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH