BACKGROUND: Representatives of the trematode family Fasciolidae are responsible for major socio-economic losses worldwide. Fascioloides magna is an important pathogenic liver fluke of wild and domestic ungulates. To date, only a limited number of studies concerning the molecular biology of F. magna exist. Therefore, the objective of the present study was to determine the complete mitochondrial (mt) genome sequence of F. magna, and assess the phylogenetic relationships of this fluke with other trematodes based on the mtDNA dataset. FINDINGS: The complete F. magna mt genome sequence is 14,047 bp. The gene content and arrangement of the F. magna mt genome is similar to those of Fasciola spp., except that trnE is located between trnG and the only non-coding region in F. magna mt genome. Phylogenetic relationships of F. magna with selected trematodes using Bayesian inference (BI) was reconstructed based on the concatenated amino acid sequences for 12 protein-coding genes, which confirmed that the genus Fascioloides is closely related to the genus Fasciola; the intergeneric differences of amino acid composition between the genera Fascioloides and Fasciola ranged 17.97-18.24 %. CONCLUSIONS: The determination of F. magna mt genome sequence provides a valuable resource for further investigations of the phylogeny of the family Fasciolidae and other trematodes, and represents a useful platform for designing appropriate molecular markers.
- MeSH
- Fasciola hepatica chemie klasifikace genetika izolace a purifikace MeSH
- Fasciolidae chemie klasifikace genetika izolace a purifikace MeSH
- fylogeneze MeSH
- genom mitochondriální * MeSH
- genom u helmintů * MeSH
- infekce červy třídy Trematoda parazitologie MeSH
- molekulární sekvence - údaje MeSH
- proteiny červů chemie genetika MeSH
- sekvence nukleotidů MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- srovnávací studie MeSH
Infection with Fascioloides magna (Digenea) causes serious damage to liver tissue in definitive hosts represented by ruminants, especially cervids. The distribution of F. magna includes the indigenous areas in North America, and the areas to which F. magna was introduced-Central Europe, Southeast Europe, and Italy. The North American intermediate host of F. magna, the freshwater snail Pseudosuccinea columella (Lymnaeidae), is an invasive species recorded in South America, the Caribbean, Africa, Australia, and west and Southeast Europe. In Europe, Galba truncatula is the snail serving for transmission, but P. columella has potential to become here a new intermediate host of F. magna. Little is known about interactions between F. magna and P. columella. In this study, the susceptibility of P. columella (Oregon, USA) to the infection by a single miracidium of the Czech strain of F. magna and the influence of F. magna on snail fecundity, shell height, and survival were evaluated. The data show that the Oregon strain of P. columella is a highly suitable host for the Czech strain of F. magna, with the infection rate of 74 %. In addition, a negative effect on survival rate of infected snails was recorded only in the late phase of infection. The infection was accompanied by a major reduction in egg mass production and by a decrease in the number of eggs per egg mass. The shell height of infected snails did not significantly differ from that in unexposed controls.
- MeSH
- druhová specificita MeSH
- Fasciola hepatica klasifikace genetika patogenita MeSH
- fasciolóza epidemiologie parazitologie veterinární MeSH
- fertilita MeSH
- hlemýždi parazitologie MeSH
- játra parazitologie patologie MeSH
- míra přežití MeSH
- molekulární typizace MeSH
- ovum parazitologie MeSH
- vysoká zvěř parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Afrika epidemiologie MeSH
- Austrálie epidemiologie MeSH
- Evropa epidemiologie MeSH
- Jižní Amerika epidemiologie MeSH
- karibský region epidemiologie MeSH
- Severní Amerika epidemiologie MeSH
BACKGROUND: Population structure and genetic interrelationships of giant liver fluke Fascioloides magna from all enzootic North American regions were revealed in close relation with geographical distribution of its obligate definitive cervid hosts for the first time. METHODS: Variable fragments of the mitochondrial cytochrome c oxidase subunit I (cox1; 384 bp) and nicotinamide dehydrogenase subunit I (nad1; 405 bp) were applied as a tool. The concatenated data set of both cox1 and nad1 sequences (789 bp) contained 222 sequences that resulted in 50 haplotypes. Genetic data were analysed using Bayesian Inference (BI), Maximum Likelihood (ML) and Analysis of Molecular Variance (AMOVA). RESULTS: Phylogenetic analysis revealed two major clades of F. magna, which separated the parasite into western and eastern populations. Western populations included samples from Rocky Mountain trench (Alberta) and northern Pacific coast (British Columbia and Oregon), whereas, the eastern populations were represented by individuals from the Great Lakes region (Minnesota), Gulf coast, lower Mississippi, and southern Atlantic seaboard region (Mississippi, Louisiana, South Carolina, Georgia, Florida) and northern Quebec and Labrador. Haplotype network and results of AMOVA analysis confirmed explicit genetic separation of western and eastern populations of the parasite that suggests long term historical isolation of F. magna populations. CONCLUSION: The genetic makeup of the parasite's populations correlates with data on historical distribution of its hosts. Based on the mitochondrial data there are no signs of host specificity of F. magna adults towards any definitive host species; the detected haplotypes of giant liver fluke are shared amongst several host species in adjacent populations.
- MeSH
- Fasciola hepatica klasifikace enzymologie genetika izolace a purifikace MeSH
- fasciolóza epidemiologie parazitologie veterinární MeSH
- fylogeneze MeSH
- genetická variace MeSH
- molekulární sekvence - údaje MeSH
- přežvýkavci parazitologie MeSH
- proteiny červů genetika metabolismus MeSH
- respirační komplex IV genetika metabolismus MeSH
- vysoká zvěř MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- provincie Québec MeSH
- Spojené státy americké MeSH
Spermatological characters of the liver fluke Mediogonimus jourdanei Mas-Coma et Rocamora, 1978 were studied by means of transmission and scanning electron microscopy. Spermiogenesis begins with the formation of the differentiation zone containing two centrioles associated with striated rootlets and an intercentriolar body. These two centrioles originate two free flagella that undergo a 90° rotation before fusing with the median cytoplasmic process. Both nuclear and mitochondrial migrations toward the median cytoplasmic process occur before the proximodistal fusion of flagella. Finally, the constriction of the ring of arched membranes gives rise to the young spermatozoon. The mature sperm of M. jourdanei measures about 260 μm and presents two axonemes of different lengths with the typical pattern of the Trepaxonemata, two bundles of parallel cortical microtubules, one mitochondrion, a nucleus and granules of glycogen. An analysis of all the microphalloidean species studied to date emphasised some differences in certain characters found in Maritrema linguilla Jägerskiöld, 1908 and Ganeo tigrinum Mehra et Negi, 1928 in comparison to those in the remaining microphalloideans. The presence and variability of such ultrastructural characters according to family, superfamily or order have led several authors to propose their use in the analysis of trematode relationships and phylogeny. Therefore, apart from producing new data on the family Prosthogonimidae, the present study also compares the spermatological organization of M. jourdanei with other available ultrastructural studies focusing on the Microphalloidea.
- MeSH
- Arvicolinae parazitologie MeSH
- Fasciola hepatica izolace a purifikace klasifikace růst a vývoj MeSH
- fasciolóza parazitologie veterinární MeSH
- fylogeneze MeSH
- nemoci hlodavců parazitologie MeSH
- spermatogeneze MeSH
- spermie klasifikace růst a vývoj MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- práce podpořená grantem MeSH