Several plants have the potential to protect essential reproductive processes such as spermatogenesis or steroidogenesis, however, effective concentrations and main mechanisms of action are still unknown. This in vitro study was aimed to assess the effects of Apium graveolens L., Levisticum officinale, and Calendula officinalis L. extracts on the structural integrity, functional activity and gap junctional intercellular communication (GJIC) in mice Leydig cells. TM3 cells were grown in the presence of experimental extracts (37.5; 75; 150 and 300 μg/ml) for 24 h. For the present study, high-performance liquid chromatography analysis was used to quantify flavonoids or phenolic acids. Subsequently, Leydig cell viability was assessed by alamarBlue assay, while the cell membrane integrity was detected by 5-carboxyfluorescein diacetate-acetoxymethyl ester. The level of steroid hormones production was determined by enzyme-linked immunosorbent assay. Additionally, GJIC was assessed by scalpel loading/dye transfer assay. According to our results, Apium graveolens L. significantly increased the viability and cell membrane integrity at 75 μg/ml (109.0±4.3%) followed by a decline at 300 μg/ml (89.4±2.3%). In case of Levisticum officinale and Calendula officinalis L. was observed significant decrease at 150 μg/ml (88.8±11.66%; 87.4±6.0%) and 300 μg/ml (86.2±9.3%; 84.1±4.6%). Furthermore, Apium graveolens L. significantly increased the progesterone and testosterone production (75 and 150 μg/ml) however, Levisticum officinale and Calendula officinalis L. significantly reduced steroid hormones synthesis at 150 and 300 μg/ml. Finally, the disturbance of GJIC was significantly affected at 300 μg/ml of Levisticum officinale (82.5±7.7%) and Calendula officinalis L. (79.8±7.0%). The balanced concentration ratio may support the Leydig cell function, steroidogenesis as well as all essential parameters that may significantly improve reproductive functions.
- MeSH
- Apium * chemie MeSH
- buněčná membrána účinky léků patologie MeSH
- buněčné linie MeSH
- Leydigovy buňky účinky léků metabolismus patologie MeSH
- libeček * chemie MeSH
- měsíček * chemie MeSH
- mezerový spoj účinky léků metabolismus patologie MeSH
- mezibuněčná komunikace účinky léků MeSH
- myši inbrední BALB C MeSH
- pohlavní steroidní hormony biosyntéza MeSH
- rostlinné extrakty izolace a purifikace farmakologie MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Humans are exposed to phthalates released from plastics, cosmetics, or food on a daily basis. Phthalates have low acute liver toxicity, but their chronic exposures could induce molecular and cellular effects linked to adverse health outcomes, such as liver tumor promotion or chronic liver diseases. The alternation of gap junctional intercellular communication (GJIC) and MAPK-Erk1/2 pathways in liver progenitor or oval cells can disrupt liver tissue homeostatic mechanisms and affect the development and severity of these adverse outcomes. Our study with 20 different phthalates revealed their structurally dependent effects on liver GJIC and MAPK-Erk1/2 signaling in rat liver WB-F344 cell line with characteristics of liver oval cells. The phthalates with a medium-length side chain (3-6 C) were the most potent dysregulators of GJIC and activators of MAPK-Erk1/2. The effects occurred rapidly, suggesting the activation of non-genomic (non-transcriptional) mechanisms directly by the parental compounds. Short-chain phthalates (1-2 C) did not dysregulate GJIC even after longer exposures and did not activate MAPK-Erk1/2. Longer chain (≥7 C) phthalates, such as DEHP or DINP, moderately activated MAPK-Erk1/2, but inhibited GJIC only after prolonged exposures (>12 h), suggesting that GJIC dysregulation occurs via genomic mechanisms, or (bio)transformation. Overall, medium-chain phthalates rapidly affected the key tissue homeostatic mechanisms in the liver oval cell population via non-genomic pathways, which might contribute to the development of chronic liver toxicity and diseases.
- MeSH
- buněčné linie MeSH
- játra cytologie účinky léků metabolismus MeSH
- krysa rodu rattus MeSH
- kyseliny ftalové aplikace a dávkování chemie toxicita MeSH
- MAP kinasový signální systém účinky léků MeSH
- mezerový spoj účinky léků MeSH
- mezibuněčná komunikace účinky léků MeSH
- viabilita buněk účinky léků MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- vztahy mezi strukturou a aktivitou MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Acute excessive ethyl alcohol (ethanol) consumption alters cardiac electrophysiology and can evoke cardiac arrhythmias, e.g., in 'holiday heart syndrome'. Ethanol acutely modulates numerous targets in cardiomyocytes, including ion channels, Ca2+-handling proteins and gap junctions. However, the mechanisms underlying ethanol-induced arrhythmogenesis remain incompletely understood and difficult to study experimentally due to the multiple electrophysiological targets involved and their potential interactions with preexisting electrophysiological or structural substrates. Here, we employed cellular- and tissue-level in-silico analyses to characterize the acute effects of ethanol on cardiac electrophysiology and arrhythmogenesis. Acute electrophysiological effects of ethanol were incorporated into human atrial and ventricular cardiomyocyte computer models: reduced INa, ICa,L, Ito, IKr and IKur, dual effects on IK1 and IK,ACh (inhibition at low and augmentation at high concentrations), and increased INCX and SR Ca2+ leak. Multiscale simulations in the absence or presence of preexistent atrial fibrillation or heart-failure-related remodeling demonstrated that low ethanol concentrations prolonged atrial action-potential duration (APD) without effects on ventricular APD. Conversely, high ethanol concentrations abbreviated atrial APD and prolonged ventricular APD. High ethanol concentrations promoted reentry in tissue simulations, but the extent of reentry promotion was dependent on the presence of altered intercellular coupling, and the degree, type, and pattern of fibrosis. Taken together, these data provide novel mechanistic insight into the potential proarrhythmic interactions between a preexisting substrate and acute changes in cardiac electrophysiology. In particular, acute ethanol exposure has concentration-dependent electrophysiological effects that differ between atria and ventricles, and between healthy and diseased hearts. Low concentrations of ethanol can have anti-fibrillatory effects in atria, whereas high concentrations promote the inducibility and maintenance of reentrant atrial and ventricular arrhythmias, supporting a role for limiting alcohol intake as part of cardiac arrhythmia management.
- MeSH
- akční potenciály účinky léků MeSH
- elektrofyziologické jevy účinky léků MeSH
- ethanol škodlivé účinky MeSH
- fibróza MeSH
- iontové kanály metabolismus MeSH
- kardiomyocyty účinky léků metabolismus MeSH
- lidé MeSH
- mezerový spoj účinky léků metabolismus MeSH
- počítačová simulace MeSH
- remodelace cév účinky léků MeSH
- srdce účinky léků patofyziologie MeSH
- srdeční arytmie patologie patofyziologie MeSH
- srdeční síně účinky léků patologie patofyziologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Inhalation exposures to polycyclic aromatic hydrocarbons (PAHs) have been associated with various adverse health effects, including chronic lung diseases and cancer. Using human bronchial epithelial cell line HBE1, we investigated the effects of structurally different PAHs on tissue homeostatic processes, namely gap junctional intercellular communication (GJIC) and MAPKs activity. Rapid (<1 h) and sustained (up to 24 h) inhibition of GJIC was induced by low/middle molecular weight (MW) PAHs, particularly by those with a bay- or bay-like region (1- and 9-methylanthracene, fluoranthene), but also by fluorene and pyrene. In contrast, linear low MW (anthracene, 2-methylanthracene) or higher MW (chrysene) PAHs did not affect GJIC. Fluoranthene, 1- and 9-methylanthracene induced strong and sustained activation of MAPK ERK1/2, whereas MAPK p38 was activated rather nonspecifically by all tested PAHs. Low/middle MW PAHs can disrupt tissue homeostasis in human airway epithelium via structure-dependent nongenotoxic mechanisms, which can contribute to their human health hazards.
- MeSH
- bronchy cytologie MeSH
- buněčné linie MeSH
- epitelové buňky účinky léků fyziologie MeSH
- lidé MeSH
- mezerový spoj účinky léků MeSH
- mezibuněčná komunikace účinky léků MeSH
- mitogenem aktivované proteinkinasy metabolismus MeSH
- polycyklické aromatické uhlovodíky toxicita MeSH
- viabilita buněk účinky léků MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Ambient air pollution and smoking are well-documented risk factors for male infertility. Prevalent air pollutants and cigarette smoke components, polycyclic aromatic hydrocarbons (PAHs), are environmental and occupational toxicants that act as chemicals disrupting endocrine regulation and reproductive potential in males. Testicular gap junctional intercellular communication (GJIC) is critical for normal development and function of testicular tissue, thus we assessed GJIC as a process potentially targeted by PAHs in testes. Lower MW PAHs with a bay or bay-like region rapidly dysregulated GJIC in Leydig TM3 cells by relocalization of major testicular gap junctional protein connexin 43 (Cx43) from plasma membrane to cytoplasm. This was associated with colocalization between Cx43 and ubiquitin in intracellular compartments, but without any effect on Cx43 degradation rate or steady-state Cx43 mRNA levels. A longer exposure to active PAHs decreased steady-state levels of full-length Cx43 protein and its 2 N-truncated isoforms. Inhibition of GJIC by PAHs, similarly to a prototypic GJIC-inhibitor TPA, was mediated via the MAP kinase-Erk1/2 and PKC pathways. Polycyclic aromatic hydrocarbon-induced GJIC dysregulation in testes was cell-type-specific because neither PAH dysregulated GJIC in Sertoli TM4 cells, despite PAHs were rapidly taken up by both Leydig TM3 as well as Sertoli TM4 cells. Because TPA effectively dysregulated GJIC in both testicular cell types, a unique regulator of GJIC targeted by PAHs might exist in Leydig TM3 cells. Our results indicate that PAHs could be a potential etiological agent contributing to reproductive dysfunctions in males through an impairment of testicular GJIC and junctional and/or nonjunctional functions of Cx43.
- MeSH
- buněčné linie MeSH
- endokrinní disruptory chemie toxicita MeSH
- fosforylace MeSH
- konexin 43 genetika metabolismus MeSH
- Leydigovy buňky účinky léků metabolismus patologie MeSH
- mezerový spoj účinky léků metabolismus patologie MeSH
- mezibuněčná komunikace účinky léků MeSH
- mitogenem aktivované proteinkinasy metabolismus MeSH
- myši MeSH
- polycyklické aromatické uhlovodíky chemie toxicita MeSH
- Sertoliho buňky účinky léků metabolismus patologie MeSH
- signální transdukce MeSH
- viabilita buněk účinky léků MeSH
- zátoková oblast polycyklických aromatických uhlovodíků MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The non-dioxin-like environmental toxicant 2,2',4,4',5,5'-hexachlorobiphenyl (PCB153), member of a group of persistent organic pollutants wide-spread throughout the environment, reduces gap junction intercellular communication (GJIC), an event possibly associated with tumor promotion. Since very few studies have investigated the signaling effectors and mode(s) of action of PCB153, and it is known that the gap junction (GJ) protein Cx43 can be regulated by the bioactive sphingolipid (SL) sphingosine 1-phosphate (S1P), this in vitro study mainly addresses whether SL metabolism is affected by PCB153 in rat liver epithelial WB-F344 cells. PCB153 treatment obtained significant changes in the S1P/ceramide (Cer) ratio, known to be crucial in determining cell fate. In particular, an increase in S1P at 30 min and a decrease of the bioactive lipid at 3 h were observed, whereas Cer level increased at 1 h and 24 h. Notably, a time-dependent modulation of sphingosine kinase (SphK), the enzyme responsible for S1P synthesis, and of its regulators, ERK1/2 and protein phosphatase PP2A, supports the involvement of these signaling effectors in PCB153 toxicity. Electrophysiological analyses, furthermore, indicated that the lipophilic environmental toxicant significantly reduced GJ biophysical properties, affecting both voltage-dependent (such as those formed by Cx43 and/or Cx32) and voltage-independent channels, thereby demonstrating that PCB153 may act differently on GJs formed by distinct Cx isoforms. SphK down-regulation alone induced GJIC impairment, and, when combined with PCB153, the acute effect on GJ suppression was additive. Moreover, after enzyme-specific gene silencing, the SphK1 isoform appears to be responsible for down-regulating Cx43 expression, while being the target of PCB153 at short-term exposure. In conclusion, we provide the first evidence of novel effectors in PCB153 toxic action in rat liver stem-like cells, leading us to consider SLs as potential markers for preventing GJIC deregulation and, thus, the tumorigenic action elicited by this environmental toxicant.
- MeSH
- dioxiny toxicita MeSH
- elektrofyziologie metody MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem antagonisté a inhibitory genetika metabolismus MeSH
- játra cytologie účinky léků MeSH
- konexin 43 metabolismus MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- lysofosfolipidy metabolismus MeSH
- mezerový spoj účinky léků fyziologie MeSH
- mitogenem aktivovaná proteinkinasa 3 metabolismus MeSH
- polychlorované bifenyly toxicita MeSH
- proteinfosfatasa 2 genetika metabolismus MeSH
- sfingolipidy metabolismus MeSH
- sfingosin analogy a deriváty metabolismus MeSH
- signální transdukce účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Methoxychlor (MXC) and vinclozolin (VIN) are well-recognized endocrine disrupting chemicals known to alter epigenetic regulations and transgenerational inheritance; however, non-endocrine disruption endpoints are also important. Thus, we determined the effects of MXC and VIN on the dysregulation of gap junctional intercellular communication (GJIC) and activation of mitogen-activated protein kinases (MAPKs) in WB-F344 rat liver epithelial cells. Both chemicals induced a rapid dysregulation of GJIC at non-cytotoxic doses, with 30 min EC50 values for GJIC inhibition being 10 µM for MXC and 126 µM for VIN. MXC inhibited GJIC for at least 24 h, while VIN effects were transient and GJIC recovered after 4 h. VIN induced rapid hyperphosphorylation and internalization of gap junction protein connexin43, and both chemicals also activated MAPK ERK1/2 and p38. Effects on GJIC were not prevented by MEK1/2 inhibitor, but by an inhibitor of phosphatidylcholine-specific phospholipase C (PC-PLC), resveratrol, and in the case of VIN, also, by a p38 inhibitor. Estrogen (ER) and androgen receptor (AR) modulators (estradiol, ICI 182,780, HPTE, testosterone, flutamide, VIN M2) did not attenuate MXC or VIN effects on GJIC. Our data also indicate that the effects were elicited by the parental compounds of MXC and VIN. Our study provides new evidence that MXC and VIN dysregulate GJIC via mechanisms involving rapid activation of PC-PLC occurring independently of ER- or AR-dependent genomic signaling. Such alterations of rapid intercellular and intracellular signaling events involved in regulations of gene expression, tissue development, function and homeostasis, could also contribute to transgenerational epigenetic effects of endocrine disruptors.
- MeSH
- androgenní receptory metabolismus MeSH
- buněčné linie MeSH
- insekticidy toxicita MeSH
- játra cytologie účinky léků metabolismus MeSH
- kmenové buňky účinky léků metabolismus MeSH
- konexin 43 metabolismus MeSH
- krysa rodu rattus MeSH
- MAP kinasový signální systém účinky léků MeSH
- methoxychlor toxicita MeSH
- mezerový spoj účinky léků MeSH
- mezibuněčná komunikace účinky léků MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- oxazoly toxicita MeSH
- potkani inbrední F344 MeSH
- receptory pro estrogeny metabolismus MeSH
- signální transdukce účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Altered gap junctional intercellular communication (GJIC) has been associated with chemical carcinogenesis, where both chemical tumor promoters and chemopreventive agents (CPAs) are known to conversely modulate GJIC. The aim of this study was to investigate whether attenuation of chemically inhibited GJIC represents a common outcome induced by different CPAs, which could be effectively evaluated using in vitro methods. Rat liver epithelial cells WB-F344 were pretreated with a CPA for either 30 min or 24 h, and then exposed to GJIC-inhibiting concentration of a selected tumor promoter or environmental toxicant [12-O-tetradecanoylphorbol-13-acetate (TPA), lindane, fluoranthene, 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT), perfluorooctanoic acid (PFOA), or pentachlorophenol]. Out of nine CPAs tested, quercetin and silibinin elicited the most pronounced effects, preventing the dysregulation of GJIC by all the GJIC inhibitors, but DDT. Metformin and curcumin attenuated the effects of three GJIC inhibitors, whereas the other CPAs prevented the effects of two (diallyl sulfide, emodin) or one (indole-3-carbinol, thymoquinone) GJIC inhibitor. Significant attenuation of chemically induced inhibition of GJIC was observed in 27 (50%) out of 54 possible combinations of nine CPAs and six GJIC inhibitors. Our data demonstrate that in vitro evaluation of GJIC can be used as an effective screening tool for identification of chemicals with potential chemopreventive activity.
- MeSH
- antikarcinogenní látky farmakologie MeSH
- DDT toxicita MeSH
- epitelové buňky účinky léků MeSH
- fluoreny toxicita MeSH
- fluorokarbony toxicita MeSH
- hexachlorcyklohexan toxicita MeSH
- játra cytologie účinky léků MeSH
- kapryláty toxicita MeSH
- karcinogeny toxicita MeSH
- krysa rodu rattus MeSH
- kultivované buňky MeSH
- kurkumin farmakologie MeSH
- metformin farmakologie MeSH
- mezerový spoj účinky léků metabolismus MeSH
- mezibuněčná komunikace účinky léků MeSH
- potkani inbrední F344 MeSH
- tetradekanoylforbolacetát toxicita MeSH
- viabilita buněk účinky léků MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Polycyclic aromatic hydrocarbons (PAHs) with lower molecular weight exhibit lesser genotoxicity and carcinogenicity than highly carcinogenic PAHs with a higher number of benzene rings. Nevertheless, they elicit specific effects linked with tumor promotion, such as acute inhibition of gap junctional intercellular communication (GJIC). Although inflammatory reaction may alter bioactivation and toxicity of carcinogenic PAHs, little is known about the impact of pro-inflammatory cytokines on toxic effects of the low-molecular-weight PAHs. Here, we investigated the impact of a pro-inflammatory cytokine, tumor necrosis factor-α (TNF-α), on the effects associated with tumor promotion and with induction of the aryl hydrocarbon receptor (AhR)-dependent gene expression in rat liver epithelial cells. We found that a prolonged incubation with TNF-α induced a down-regulation of GJIC, associated with reduced expression of connexin 43 (Cx43), a major connexin isoform found in liver epithelial cells. The Cx43 down-regulation was partly mediated by the activity of the mitogen-activated protein (MAP) p38 kinase. Independently of GJIC modulation, or p38 activation, TNF-α potentiated the AhR-dependent proliferative effect of a model low-molecular-weight PAH, fluoranthene, on contact-inhibited cells. In contrast, this pro-inflammatory cytokine repressed the fluoranthene-induced expression of a majority of model AhR gene targets, such as Cyp1a1, Ahrr or Tiparp. The results of the present study indicate that inflammatory reaction may differentially modulate various toxic effects of low-molecular-weight PAHs; the exposure to pro-inflammatory cytokines may both strengthen (inhibition of GJIC, disruption of contact inhibition) and repress (expression of a majority of AhR-dependent genes) their impact on toxic endpoints associated with carcinogenesis.
- MeSH
- aktivace enzymů MeSH
- buněčné linie MeSH
- časové faktory MeSH
- epitelové buňky účinky léků metabolismus patologie MeSH
- fluoreny toxicita MeSH
- genetická transkripce účinky léků MeSH
- játra účinky léků metabolismus patologie MeSH
- konexin 43 genetika metabolismus MeSH
- krysa rodu rattus MeSH
- mezerový spoj účinky léků metabolismus patologie MeSH
- mezibuněčná komunikace účinky léků MeSH
- mitogenem aktivované proteinkinasy p38 metabolismus MeSH
- molekulová hmotnost MeSH
- nádorová transformace buněk chemicky indukované metabolismus patologie MeSH
- nádory jater chemicky indukované metabolismus patologie MeSH
- proliferace buněk účinky léků MeSH
- receptory aromatických uhlovodíků agonisté genetika metabolismus MeSH
- regulace genové exprese účinky léků MeSH
- signální transdukce účinky léků MeSH
- TNF-alfa toxicita MeSH
- transkripční faktory bHLH agonisté genetika metabolismus MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zánět chemicky indukované genetika metabolismus patologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
UNLABELLED: Dysregulation of gap junctional intercellular communication (GJIC) has been associated with different pathologies, including cancer; however, molecular mechanisms regulating GJIC are not fully understood. Mitogen Activated Protein Kinase (MAPK)-dependent mechanisms of GJIC-dysregulation have been well-established, however recent discoveries have implicated phosphatidylcholine-specific phospholipase C (PC-PLC) in the regulation of GJIC. What is not known is how prevalent these two signaling mechanisms are in toxicant/toxin-induced dysregulation of GJIC, and do toxicants/toxins work through either signaling mechanisms or both, or through alternative signaling mechanisms. Different chemical toxicants were used to assess whether they dysregulate GJIC via MEK or PC-PLC, or both Mek and PC-PLC, or through other signaling pathways, using a pluripotent rat liver epithelial oval-cell line, WB-F344. Epidermal growth factor, 12-O-tetradecanoylphorbol-13-acetate, thrombin receptor activating peptide-6 and lindane regulated GJIC through a MEK1/2-dependent mechanism that was independent of PC-PLC; whereas PAHs, DDT, PCB 153, dicumylperoxide and perfluorodecanoic acid inhibited GJIC through PC-PLC independent of Mek. Dysregulation of GJIC by perfluorooctanoic acid and R59022 required both MEK1/2 and PC-PLC; while benzoylperoxide, arachidonic acid, 18β-glycyrrhetinic acid, perfluorooctane sulfonic acid, 1-monolaurin, pentachlorophenol and alachlor required neither MEK1/2 nor PC-PLC. Resveratrol prevented dysregulation of GJIC by toxicants that acted either through MEK1/2 or PC-PLC. Except for alachlor, resveratrol did not prevent dysregulation of GJIC by toxicants that worked through PC-PLC-independent and MEK1/2-independent pathways, which indicated at least two other, yet unidentified, pathways that are involved in the regulation of GJIC. IN CONCLUSION: the dysregulation of GJIC is a contributing factor to the cancer process; however the underlying mechanisms by which gap junction channels are closed by toxicants vary. Thus, accurate assessments of risk posed by toxic agents, and the role of dietary phytochemicals play in preventing or reversing the effects of these agents must take into account the specific mechanisms involved in the cancer process.
- MeSH
- analýza hlavních komponent MeSH
- buněčné linie MeSH
- butadieny farmakologie MeSH
- fosfatidylcholiny metabolismus MeSH
- fosfolipasy typu C metabolismus MeSH
- krysa rodu rattus MeSH
- mezerový spoj účinky léků metabolismus MeSH
- nitrily farmakologie MeSH
- potkani inbrední F344 MeSH
- přemostěné cyklické sloučeniny farmakologie MeSH
- stilbeny farmakologie MeSH
- thioketony farmakologie MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH