Characterization of PCB exposure sources for vulnerable population groups is essential to minimize the health effects of PCB exposure. At the same time, it is important to consolidate the knowledge on threshold intakes of PCBs for infants and toddlers to prevent health effects. We estimated total PCB concentrations from birth to 2 years of age in children from Slovak and Czech populations, which continue to have high PCB concentrations in breast milk. Using a pharmacokinetic (PK) model, we characterized dominant PCB exposure sources and estimated new threshold estimated daily intakes (TEDI) (above which adverse effects cannot be excluded) for postnatal PCB exposure in infants and toddlers. In the PK model, concentrations of seven indicator PCBs in breast milk and cord blood samples from 291 mother-child pairs from the Slovak birth cohort, and 396 breast milk samples from Czech mothers we used, together with their physiological characteristics and PCB concentrations from other exposure sources (food, dust, air). The estimated total PCB concentrations in children's blood at different ages were compared with threshold PCB concentrations of 500, 700 and 1000 ng·glipid-1 in serum proposed by the French Agency for Food, Environmental and Occupational Health & Safety (ANSES) and the German Environment Agency (UBA), above which possible adverse health effects may be expected. We estimated that up to 20.6% of Slovak children and up to 45.7% of Czech children at two years of age exceeded the threshold value of 700 ng·glipid-1 in blood. Mean TEDIs leading to values of 500 ng·glipid-1 in blood for children up to two years ranged between 110 and 220 ng·kg-1·bw·day-1, varying according to breastfeeding duration. Breast milk and prenatal exposure contributed to 71%-85% of PCBs exposure at two years of age. In contrast, the contributions of PCBs from dust and indoor air were negligible.
- MeSH
- kojenec MeSH
- kojení MeSH
- látky znečišťující životní prostředí * analýza MeSH
- lidé MeSH
- lipidy MeSH
- mateřské mléko chemie MeSH
- nežádoucí účinky léčiv * MeSH
- polychlorované bifenyly * analýza MeSH
- prach MeSH
- předškolní dítě MeSH
- těhotenství MeSH
- Check Tag
- kojenec MeSH
- lidé MeSH
- předškolní dítě MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
The occurrence and bioaccumulation of new and legacy persistent organic pollutants (POPs), organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), polychlorinated naphthalenes (PCNs), hexabromocyclododecanes (HBCDs), and Dechlorane Plus (DPs) and their related compounds (Dechloranes) in an ecosystem on King George Island, Antarctica are investigated. The new and legacy POPs were widely detected in the animal samples collected from Antarctica, which included Limpet, Antarctic cod, Amphipods, Antarctic icefish, Gentoo and Chinstrap penguins, Kelp gull, and South polar skua. The trophic magnification factors indicated that the levels of PCNs and HBCDs, as well as the legacy POPs, were magnified through the food web, whereas DPs might be diluted through the trophic levels contradicting the classification of Dechloranes as POPs. This is one of the first extensive surveys on PCNs, HBCDs, and Dechloranes, which provides unique information on the distribution and trophic biomagnification potential of the new and legacy POPs in the Antarctic region.
- MeSH
- bioakumulace MeSH
- chemické látky znečišťující vodu * analýza MeSH
- ekosystém MeSH
- monitorování životního prostředí MeSH
- perzistentní organické znečišťující látky MeSH
- polychlorované bifenyly * analýza MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Antarktida MeSH
Unique bacterial associations were formed in the polluted soils from territory of the industrial factories Open Joint Stock Company "The Middle Volga Chemical Plant," Chapaevsk, Russia and Open Joint Stock Company "Lubricant Producing Plant," Perm, Russia. This study evaluates the influence of the biphenyl/polychlorinated biphenyls (PCB) on the formation of aerobic bacterial associations and their biodegradative potential. Enrichment cultivation of the soil samples from the territories of these industrial factories with PCB (commercial mixture Sovol) was lead for forming aerobic bacterial enrichment cultures showing a unique composition. The dominating in these bacterial cultures was the phylum Proteobacteria (Beta- and Gammaproteobacteria). Using biphenyl as a carbon source led to decrease of biodiversity in the final stable bacterial associations. Periodic cultivation experiments demonstrated that the association PN2-B has a high degradative potential among the six studied bacterial associations. PN2-B degraded 100% mono-chlorobiphenyls (94.5 mg/L), 86.2% di-chlorobiphenyls (22.3 mg/L), 50.9% Sovol, and 38.4% Delor 103 (13.8 mg/L). Qualitative analysis of metabolites showed that association performed transformation of chlorobenzoic acids (PCB degradation intermediates) into metabolites of citrate cycle. Twelve individual strain-destructors were isolated. The strains were found to degrade 17.7-100% PCB1, 36.2-100% PCB2, 18.8-100% PCB3 (94.5 mg/L), and 15.7-78.2% PCB8 (22.3 mg/L). The strains were shown to metabolize chlorobenzoic acids formed during degradation of chlorobiphenyls. A unique ability of strains Micrococcus sp. PNS1 and Stenotrophomonas sp. PNS6 to degrade ortho-, meta-, and para-monosubstituted chlorobenzoic acids was revealed. Our results suggest that PN2-B and individual bacterial strains will be perspective for cleaning of the environment from polychlorinated biphenyls.
This study presents four years ambient monitoring data of seventeen 2,3,7,8-chlorine substituted polychlorinated dibenzo-p-dioxins and polychlorinated dibenzofurans (PCDD/Fs), twelve dioxin-like polychlorinated biphenyls (dl-PCBs) and sixteen polycyclic aromatic hydrocarbons (PAHs) designed by the US EPA at a background site in central Europe during 2011-2014. The concentrations expressed as toxic equivalents (TEQs) using the WHO2005-scheme for PCDD/Fs (0.2 fg m-3-61.1 fg m-3) were higher than for dl-PCBs (0.01 fg m-3-2.9 fg m-3), while the opposite was found in terms of mass concentrations. ΣPAHs ranged from 0.20 ng m-3 to 134 ng m-3. The mass concentration profile of PCDD/Fs, dl-PCBs and PAHs was similar throughout the four years. PCDD/Fs and PAHs concentrations were dominated by primary sources peaking in winter, while those of dl-PCBs were controlled by secondary sources characterized by a spring-summer peak. During 2011-2014, no significant decrease in the atmospheric levels of ΣPCDD/Fs was observed. On the other hand, the concentrations of Σdl-PCBs and ΣPAHs were decreasing, with halving times of 5.7 and 2.7 years, respectively. We estimated that 422 pg m-2 year-1-567 pg m-2 year-1 TEQ PCDD/Fs and 3.48 pg m-2 year-1-15.8 pg m-2 year-1 TEQ dl-PCBs were transferred from the air to the ground surfaces via dry particulate deposition during 2011-2014.
- MeSH
- látky znečišťující vzduch analýza MeSH
- monitorování životního prostředí MeSH
- polychlorované bifenyly analýza MeSH
- polychlorované dibenzodioxiny analýza MeSH
- polychlorované dibenzofurany analýza MeSH
- polycyklické aromatické uhlovodíky analýza MeSH
- roční období MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Despite wastewater treatment, sewage sludge is often contaminated with multiple pollutants. Their impact on the phylogenetic composition and diversity of prokaryotic communities in sludge samples remains largely unknown. In this study, we analyzed the phylogenetic structure of bacterial communities and diversity in sludge from six waste water treatment plants (WWTPs) and linked this information with the pollutants identified in these samples: eight potentially toxic metals (PTMs) and four groups of organic pollutants [polychlorinated biphenyls (PCBs), polyromantic hydrocarbons (PAHs), brominated flame retardants (BFRs) and organochlorine pesticides (OCPs)]. Alpha diversity measures and the distribution of dominant phyla varied among the samples, with the community from the thermophilic anaerobic digestion (TAD)-stabilized sample from Prague being the least rich and the least diverse and containing on average 36% of 16S rRNA gene sequence reads of the thermotolerant genus Coprothermobacter of the class Clostridia (phylum Firmicutes). Using weighted UniFrac distance-based redundancy analysis (dbRDA), we found that a collection of 5 PTMs: Cr, Cu, Ni, Pb, Zn, and a pair of BFRs: hexabromocyclododecane (HBCD) and tribromodiphenyl ethers (triBDEs) were significantly associated with the bacterial community structure in mesophilic anaerobic digestion (MAD)-stabilized samples, whereas PCBs were observed to be marginally significant. Altogether, 85% of the variance in bacterial community structure could be ascribed to these pollutants. The data presented here contribute to a greater understanding of the ecological effects of combined pollution on the composition and diversity of bacterial communities, hence have the potential to aid in predicting ecosystem functions and/or disruptions associated with pollution.
- MeSH
- Bacteria klasifikace genetika metabolismus MeSH
- bromované uhlovodíky analýza MeSH
- chemické látky znečišťující vodu analýza MeSH
- ekosystém MeSH
- fylogeneze MeSH
- odpadní vody chemie mikrobiologie MeSH
- pesticidy analýza MeSH
- polybrombifenylové sloučeniny analýza MeSH
- polychlorované bifenyly analýza MeSH
- retardanty hoření analýza MeSH
- RNA ribozomální 16S genetika MeSH
- Publikační typ
- časopisecké články MeSH
Organic compounds like flame retardants (FRs), polychlorinated biphenyls (PCBs), organochlorine pesticides (OCPs) and polycyclic aromatic hydrocarbons (PAHs) are consistently found in both indoor and outdoor environments. There are many possible matrices for measurement of these compounds (e.g. indoor dust, air - passive and active air samples), but all methods have limitations, like the heterogeneous distribution of indoor dust, or noisy active air samplers. We used filters from building-wide heating, ventilation and air conditioning (HVAC) units to evaluate levels of PAHs, PCBs, OCPs and NFRs in indoor and outdoor environments, and to evaluate whether this method is feasible for screening semivolatile organic compounds (SVOCs) in indoor and near-building outdoor environments. Detectable levels of FRs, PCBs, OCPs and PAHs were found, demonstrating that HVAC filters do collect SVOCs, with generally higher levels of PAHs in the incoming air filters and higher levels of PCBs, OCPs and FRs in the outgoing air filters. Levels of FRs, PCBs and OCPs in outgoing air were comparable to those measured using conventional active air sampling in the same building. The advantages of using HVAC filters are (1) integrated and homogeneous samples, as the whole building is sampled over typically a long timescale (months), and (2) samples are easy and cheap to collect and do not require prior deployment of samplers. The key disadvantage is that HVAC filters are not designed for analytical chemistry and thus the filter materials can have variable or unknown gas sorption and particle capture, and can have strong matrix effects during analysis.
- MeSH
- klimatizace MeSH
- látky znečišťující vzduch * analýza MeSH
- monitorování životního prostředí MeSH
- polychlorované bifenyly * analýza MeSH
- polycyklické aromatické uhlovodíky * analýza MeSH
- retardanty hoření * analýza MeSH
- těkavé organické sloučeniny * analýza MeSH
- vzduchové filtry * MeSH
- znečištění vzduchu ve vnitřním prostředí * analýza MeSH
- Publikační typ
- časopisecké články MeSH
The completed environmental study was concerned with assessing the exposure of the Czech population to polybrominated diphenyl ethers (PBDEs). Simultaneously, the levels of polychlorinated pollutants such as polychlorinated biphenyls (PCBs) and chlorinated diphenyl ethanes (DDTs) were also monitored. The pollutant levels were newly measured in solid fat tissue removed during plastic surgery. A total of 107 samples of fat were taken from 19-76-year-old volunteers. A total of 16 PBDE congeners were determined, of which only six occur in more than 38% of fat tissue samples. The total PBDE level attains an average value of 3.31 ng/g, which is 25% less than was measured in 2009. On the other hand, there was an increase in the levels of two PCB congeners, which was caused by an increase of the total PCB concentration from level of 625.5 ng/g, published in 2009, to the current level of 776 ng/g. The level of DDTs decreased and currently has a value of 467.4 ng/g, which is about 24% lower than in 2009. The contamination of obese middle-aged women in Czechia by more modern types of pollutants, such as PBDEs, is incomparably lower than that by PCBs and DDTs and is also decreasing in time.
- MeSH
- dospělí MeSH
- látky znečišťující životní prostředí škodlivé účinky analýza MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- polychlorované bifenyly škodlivé účinky analýza MeSH
- retardanty hoření škodlivé účinky analýza MeSH
- senioři MeSH
- tuková tkáň patofyziologie MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls (PCBs) and organochlorine pesticides (OCPs) are ubiquitous and toxic contaminants. Their atmospheric deposition fluxes on the regional scale were quantified based on simultaneous sampling during 1 to 5 years at 1 to 6 background/rural sites in the Czech Republic and Austria. The samples were extracted and analysed by means of gas chromatography coupled to mass spectrometry. For all seasons and sites, total deposition fluxes for Σ15PAHs ranged 23-1100 ng m-2 d-1, while those for Σ6PCBs and Σ12OCPs ranged 64-4400 and 410-7800 pg m-2 d-1, respectively. Fluoranthene and pyrene were the main contributors to the PAH deposition fluxes, accounting on average for 19% each, while deposition fluxes of PCBs and OCPs were dominated by PCB153 (26%) and γ-hexachlorobenzene (30%), respectively. The highest deposition flux of Σ15PAHs was generally found in spring, while no seasonality was found for PCB deposition. For deposition fluxes for Σ12OCPs, no clear spatial trend was found, confirming the perception of long-lived regional pollutants. Although most OCPs and PCBs hardly partition to the particulate phase in ambient air, on average, 42% of their deposition fluxes were found on filters, confirming the perception that particle deposition is more efficient than dry gaseous deposition. Due to methodological constraints, fluxes derived from bulk deposition samplers should be understood as lower estimates, in particular with regard to those substances which in ambient aerosols mostly partition to the particulate phase.
- MeSH
- chlorované uhlovodíky analýza MeSH
- hexachlorbenzen analýza MeSH
- látky znečišťující vzduch analýza MeSH
- monitorování životního prostředí * MeSH
- pesticidy analýza MeSH
- plynová chromatografie s hmotnostně spektrometrickou detekcí MeSH
- polychlorované bifenyly analýza MeSH
- polycyklické aromatické uhlovodíky analýza MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
- Evropa MeSH
- Rakousko MeSH
There is an increasing awareness of the threats posed by the worldwide presence of microplastics (MPs) in the environment. Due to their high persistence, MPs will accumulate in the environment and their quantities tend to increase with time. MPs end up in environments where often also chemical contaminants are present. Since the early 2000s, the number of studies on the sorption of chemicals to plastic particles has exponentially increased. The objective of this study was to critically review the literature to identify the most important factors affecting the sorption of chemical contaminants to MPs. These factors include the physicochemical properties of both the MPs and the chemical contaminants as well as environmental characteristics. A limited number of studies on soil together with an increased notion of the importance of this compartment as a final sink for MPs was observed. Therefore, we assessed the distribution of model chemicals (two PCBs and phenanthrene) in the soil compartment in the presence of MPs using a mass balance model. The results showed a high variation among chemicals and microplastic types. Overall, a higher partitioning to MPs of chemical contaminants in soil is expected in comparison to aquatic environments. As sorption to a large extent determines bioavailability, the effects of combined exposure to chemicals and MPs on the toxicity and bioaccumulation in biota are discussed. Finally, some considerations regarding sorption and toxicity studies using MPs are given.
- MeSH
- biologická dostupnost MeSH
- chemické látky znečišťující vodu analýza MeSH
- chemické modely MeSH
- fenantreny analýza MeSH
- lidé MeSH
- monitorování životního prostředí MeSH
- plastické hmoty analýza MeSH
- polychlorované bifenyly analýza MeSH
- půda chemie MeSH
- společenstvo MeSH
- vystavení vlivu životního prostředí škodlivé účinky MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Semivolatile organic compounds (SVOCs) emitted from consumer products, building materials, and indoor and outdoor activities can be highly persistent in indoor environments. Human exposure to and environmental contamination with polychlorinated biphenyls (PCBs) was previously reported in a region near a former PCB production facility in Slovakia. However, we found that the indoor residential PCB levels did not correlate with the distance from the facility. Rather, indoor levels in this region and those reported in the literature were related to the historic PCB use on a national scale and the inferred presence of primary sources of PCBs in the homes. Other SVOCs had levels linked with either the activities in the home, e.g., polycyclic aromatic hydrocarbons (PAHs) with wood heating; or outdoor activities, e.g., organochlorine pesticides (OCPs) with agricultural land use and building age. We propose a classification framework to prioritize SVOCs for monitoring in indoor environments and to evaluate risks from indoor SVOC exposures. Application of this framework to 88 measured SVOCs identified several PCB congeners (CB-11, -28, -52), hexachlorobenzene (HCB), benzo(a)pyrene, and γ-HCH as priority compounds based on high exposure and toxicity assessed by means of toxicity reference values (TRVs). Application of the framework to many emerging compounds such as novel flame retardants was not possible because of either no or outdated TRVs. Concurrent identification of seven SVOC groups in indoor environments provided information on their comparative levels and distributions, their sources, and informed our assessment of associated risks.