As a promiscuous xenobiotic sensor, pregnane X receptor (PXR) plays a crucial role in drug metabolism. Since dietary phytochemicals exhibit the potential to modulate human PXR, this review aims to summarize the plant-derived PXR modulators, including agonists, partial agonists, and antagonists. The crystal structures of the apo and ligand-bound forms of PXR especially that of PXR complexed with binary mixtures are summarized, in order to provide the structural basis for PXR binding promiscuity and synergistic activation of PXR by composite ligands. Furthermore, this review summarizes the characterized agonists, partial agonists, and antagonists of human PXR from botanical source. Contrary to PXR agonists, there are only a few antagonists obtained from botanical source due to the promiscuity of PXR. It is worth noting that trans-resveratrol and a series of methylindoles have been identified as partial agonists of PXR, both in activating PXR function, but also inhibiting the effect of other PXR agonists. Since antagonizing PXR function plays a crucial role in the prevention of drug-drug interactions and improvement of therapeutic efficacy, further research is necessary to screen more plant-derived PXR antagonists in the future. In summary, this review may contribute to understanding the roles of phytochemicals in food-drug and herb-drug interactions.
- MeSH
- fytonutrienty farmakologie MeSH
- lidé MeSH
- pregnanový X receptor MeSH
- resveratrol MeSH
- steroidní receptory * chemie metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
The nuclear constitutive androstane receptor (CAR, NR1I3) plays significant roles in many hepatic functions, such as fatty acid oxidation, biotransformation, liver regeneration, as well as clearance of steroid hormones, cholesterol, and bilirubin. CAR has been proposed as a hypothetical target receptor for metabolic or liver disease therapy. Currently known prototype high-affinity human CAR agonists such as CITCO (6-(4-chlorophenyl)imidazo[2,1-b][1,3]thiazole-5-carbaldehyde-O-(3,4-dichlorobenzyl)oxime) have limited selectivity, activating the pregnane X receptor (PXR) receptor, a related receptor of the NR1I subfamily. We have discovered several derivatives of 3-(1H-1,2,3-triazol-4-yl)imidazo[1,2-a]pyridine that directly activate human CAR in nanomolar concentrations. While compound 39 regulates CAR target genes in humanized CAR mice as well as human hepatocytes, it does not activate other nuclear receptors and is nontoxic in cellular and genotoxic assays as well as in rodent toxicity studies. Our findings concerning potent human CAR agonists with in vivo activity reinforce the role of CAR as a possible therapeutic target.
- MeSH
- hepatocyty účinky léků metabolismus MeSH
- konstitutivní androstanový receptor * agonisté chemie MeSH
- lidé MeSH
- myši MeSH
- pyridiny farmakologie MeSH
- receptory cytoplazmatické a nukleární metabolismus MeSH
- steroidní receptory * agonisté chemie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
PCB 136 is an environmentally relevant chiral PCB congener, which has been found in vivo to be present in form of rotational isomers (atropisomers). Its atropselective biotransformation or neurotoxic effects linked with sensitization of ryanodine receptor suggest that it might interact also with other intracellular receptors in a stereospecific manner. However, possible atropselective effects of PCB 136 on nuclear receptor transactivation remain unknown. Therefore, in this study, atropselective effects of PCB 136 on nuclear receptors controlling endocrine signaling and/or expression of xenobiotic and steroid hormone catabolism were investigated. PCB136 atropisomers were found to exert differential effects on estrogen receptor (ER) activation; (+)-PCB 136 was estrogenic, while (-)-PCB 136 was antiestrogenic. In contrast, inhibition of androgen receptor (AR) activity was not stereospecific. Both PCB136 stereoisomers induced the constitutive androgen receptor (CAR)-dependent gene expression; however, no significant stereospecificity of PCB 136 atropisomers was observed. PCB136 was a partial inducer of the pregnane X receptor (PXR)-dependent gene expression. Here, (-)-PCB 136 was a significantly more potent inducer of PXR activity than (+)-PCB 136. Taken together, the present results indicate that at least two nuclear receptors participating in endocrine regulation or metabolism, ER and PXR, could be regulated in an atropselective manner by chiral PCB 136. The enantioselective enrichment of PCB atropisomers in animal and human tissues may thus have significant consequences for endocrine-disrupting effects of chiral ortho-substituted PCB congeners.
Phosphatidylinositol 4,5-bisphosphate (PI(4,5)P2) is a critically important regulatory lipid of the plasma membrane (PM); however, little is known about how cells regulate PM PI(4,5)P2 levels. Here, we show that the phosphatidylinositol 4-phosphate (PI4P)/phosphatidylserine (PS) transfer activity of the endoplasmic reticulum (ER)-resident ORP5 and ORP8 is regulated by both PM PI4P and PI(4,5)P2 Dynamic control of ORP5/8 recruitment to the PM occurs through interactions with the N-terminal Pleckstrin homology domains and adjacent basic residues of ORP5/8 with both PI4P and PI(4,5)P2 Although ORP5 activity requires normal levels of these inositides, ORP8 is called on only when PI(4,5)P2 levels are increased. Regulation of the ORP5/8 attachment to the PM by both phosphoinositides provides a powerful means to determine the relative flux of PI4P toward the ER for PS transport and Sac1-mediated dephosphorylation and PIP 5-kinase-mediated conversion to PI(4,5)P2 Using this rheostat, cells can maintain PI(4,5)P2 levels by adjusting the availability of PI4P in the PM.
- MeSH
- biologický transport MeSH
- buněčná membrána metabolismus MeSH
- endoplazmatické retikulum metabolismus MeSH
- fosfatidylinositol-4,5-difosfát metabolismus MeSH
- fosfatidylinositolfosfáty metabolismus MeSH
- fosfatidylseriny metabolismus MeSH
- fosfotransferasy s alkoholovou skupinou jako akceptorem metabolismus MeSH
- HEK293 buňky MeSH
- krysa rodu rattus MeSH
- lidé MeSH
- proteinové domény MeSH
- steroidní receptory chemie metabolismus MeSH
- substrátová specifita MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Research Support, N.I.H., Intramural MeSH
The Pregnane X (PXR), Vitamin D (VDR) and Farnesoid X (FXR) nuclear receptors have been shown to be receptors of bile acids controlling their detoxification or synthesis. Chenodeoxycholic (CDCA) and lithocholic (LCA) acids are ligands of FXR and VDR, respectively, whereas 3-keto and acetylated derivates of LCA have been described as ligands for all three receptors. In this study, we hypothesized that oxidation or acetylation at position 3, 7 and 12 of bile acids DCA (deoxycholic acid), LCA, CA (cholic acid), and CDCA by detoxification enzymes or microbiome may have an effect on the interactions with bile acid nuclear receptors. We employed reporter gene assays in HepG2 cells, the TR-FRET assay with recombinant PXR and RT-PCR to study the effects of acetylated and keto bile acids on the nuclear receptors activation and their target gene expression in differentiated hepatic HepaRG cells. We demonstrate that the DCA 3,12-diacetate and CA 3,7,12-triacetate derivatives are ligands of PXR and DCA 3,12-diacetate induces PXR target genes such as CYP3A4, CYP2B6 and ABCB1/MDR1. In conclusion, we found that acetylated DCA and CA are potent ligands of PXR. Whether the acetylated bile acid derivatives are novel endogenous ligands of PXR with detoxification or physiological functions should be further studied in ongoing experiments.
- MeSH
- acetylace MeSH
- buněčné kultury MeSH
- buňky Hep G2 MeSH
- cytochrom P-450 CYP3A genetika MeSH
- cytochrom P450 CYP2B6 genetika MeSH
- hepatocyty účinky léků enzymologie metabolismus MeSH
- kyselina cholová chemie metabolismus farmakologie MeSH
- kyselina deoxycholová chemie metabolismus farmakologie MeSH
- lidé MeSH
- ligandy MeSH
- myši MeSH
- oxidace-redukce MeSH
- P-glykoprotein genetika MeSH
- plazmidy MeSH
- receptory cytoplazmatické a nukleární chemie genetika metabolismus MeSH
- receptory kalcitriolu chemie genetika metabolismus MeSH
- reportérové geny MeSH
- simulace molekulového dockingu MeSH
- steroidní receptory chemie genetika metabolismus MeSH
- techniky dvojhybridového systému MeSH
- transfekce MeSH
- vazba proteinů MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Klíčová slova
- membránové steroidní receptory,
- MeSH
- lidé MeSH
- pohlavní steroidní hormony MeSH
- steroidní receptory * fyziologie chemie MeSH
- Check Tag
- lidé MeSH
- MeSH
- lidé MeSH
- pohlavní steroidní hormony MeSH
- steroidní receptory * fyziologie chemie MeSH
- Check Tag
- lidé MeSH
- Klíčová slova
- vazebná kapsa,
- MeSH
- lidé MeSH
- pohlavní steroidní hormony MeSH
- steroidní receptory * fyziologie chemie MeSH
- Check Tag
- lidé MeSH
Pregnane X receptor (PXR) is a major transcriptional regulator of xenobiotic metabolism and transport pathways in the liver and intestines, which are critical for protecting organisms against potentially harmful xenobiotic and endobiotic compounds. Inadvertent activation of drug metabolism pathways through PXR is known to contribute to drug resistance, adverse drug-drug interactions, and drug toxicity in humans. In both humans and rodents, PXR has been implicated in non-alcoholic fatty liver disease, diabetes, obesity, inflammatory bowel disease, and cancer. Because of PXR's important functions, it has been a therapeutic target of interest for a long time. More recent mechanistic studies have shown that PXR is modulated by multiple PTMs. Herein we provide the first investigation of the role of acetylation in modulating PXR activity. Through LC-MS/MS analysis, we identified lysine 109 (K109) in the hinge as PXR's major acetylation site. Using various biochemical and cell-based assays, we show that PXR's acetylation status and transcriptional activity are modulated by E1A binding protein (p300) and sirtuin 1 (SIRT1). Based on analysis of acetylation site mutants, we found that acetylation at K109 represses PXR transcriptional activity. The mechanism involves loss of RXRα dimerization and reduced binding to cognate DNA response elements. This mechanism may represent a promising therapeutic target using modulators of PXR acetylation levels. This article is part of a Special Issue entitled: Xenobiotic nuclear receptors: New Tricks for An Old Dog, edited by Dr. Wen Xie.
- MeSH
- acetylace MeSH
- aktivace transkripce * MeSH
- buňky Hep G2 MeSH
- DNA chemie metabolismus MeSH
- Escherichia coli genetika metabolismus MeSH
- HEK293 buňky MeSH
- HeLa buňky MeSH
- klonování DNA MeSH
- lidé MeSH
- luciferasy genetika metabolismus MeSH
- lysin chemie metabolismus MeSH
- molekulární modely MeSH
- multimerizace proteinu MeSH
- mutageneze cílená MeSH
- posttranslační úpravy proteinů * MeSH
- rekombinantní proteiny chemie genetika metabolismus MeSH
- reportérové geny MeSH
- responzivní elementy MeSH
- sekundární struktura proteinů MeSH
- sirtuin 1 genetika metabolismus MeSH
- steroidní receptory chemie genetika metabolismus MeSH
- strukturní homologie proteinů MeSH
- transkripční faktory p300-CBP genetika metabolismus MeSH
- vztahy mezi strukturou a aktivitou MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Pregnane X receptor (PXR) is a member of the nuclear receptor (NR) superfamily of ligand-activated transcription factors and is activated by a huge variety of endobiotics and xenobiotics, including many clinical drugs. PXR plays key roles not only as a xenosensor in the regulation of both major phase I and II drug metabolism and transporters but also as a physiological sensor in the modulation of bile acid and cholesterol metabolism, glucose and lipid metabolism, and bone and endocrine homeostasis. Post-translational modifications such as phosphorylation have been shown to modulate the activity of many NRs, including PXR, and constitute an important mechanism for crosstalk between signaling pathways and regulation of genes involved in both xenobiotic and endobiotic metabolism. In addition, microRNAs have recently been shown to constitute another level of PXR activity regulation. The objective of this review is to comprehensively summarize current understanding of post-transcriptional and post-translational modifications of PXR in regulation of xenobiotic-metabolizing cytochrome P450 (CYP) genes, mainly in hepatic tissue. We also discuss the importance of PXR in crosstalk with cell signaling pathways, which at the level of transcription modify expression of genes associated with some physiological and pathological stages in the organs. Finally, we indicate that these PXR modifications may have important impacts on CYP-mediated biotransformation of some clinically used drugs.
- MeSH
- biotransformace MeSH
- enzymová indukce účinky léků MeSH
- interakční proteinové domény a motivy MeSH
- játra účinky léků enzymologie metabolismus MeSH
- lidé MeSH
- messenger RNA metabolismus MeSH
- posttranskripční úpravy RNA * účinky léků MeSH
- posttranslační úpravy proteinů * účinky léků MeSH
- steroidní receptory chemie genetika metabolismus MeSH
- systém (enzymů) cytochromů P-450 genetika metabolismus MeSH
- xenobiotika metabolismus farmakokinetika toxicita MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH