Studies of tick-borne diseases (TBDs) in Europe focus on pathogens with principal medical importance (e.g. Lyme disease and tick-borne encephalitis), but we have limited epidemiological information on the neglected pathogens, such as the members of the genera Anaplasma, Rickettsia, Babesia and Candidatus Neoehrlichia mikurensis. Here, we integrated an extensive field sampling, laboratory analysis and GIS models to provide first publicly available information on pathogen diversity, prevalence and infection risk for four overlooked zoonotic TBDs in the Czech Republic. In addition, we assessed the effect of landscape variables on the abundance of questing ticks at different spatial scales and examined whether pathogen prevalence increased with tick density. Our data from 13,340 ticks collected in 142 municipalities showed that A. phagocytophilum (MIR = 3.5%) and Ca. Neoehrlichia mikurensis (MIR = 4.0%) pose geographically uneven risks with localized hotspots, while Rickettsia (MIR = 4.9%) and Babesia (MIR = 1.1%) had relatively homogeneous spatial distribution. Landscape variables had significant effect on tick abundance up to the scale of 1 km around the sampling sites. Questing ticks responded positively to landscape diversity and configuration, especially to forest patch density that strongly correlates with the amount of woodland-grassland ecotones. For all four pathogens, we found higher prevalence in places with higher densities of ticks, confirming the hypothesis that tick abundance amplifies the risk of TB infection. Our findings highlight the importance of landscape parameters for tick vectors, likely due to their effect on small vertebrates as reservoir hosts. Future studies should explicitly investigate the combined effect of landscape parameters and the composition and population dynamics of hosts on the host-vector-pathogen system.
- MeSH
- Anaplasmataceae izolace a purifikace MeSH
- Babesia izolace a purifikace MeSH
- Ixodidae mikrobiologie parazitologie MeSH
- Rickettsia izolace a purifikace MeSH
- životní prostředí MeSH
- zoonózy * mikrobiologie parazitologie MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Anaplasma phagocytophilum and Rickettsia spp. are vector-borne zoonotic bacteria, which are clinically important especially in immunocompromised patients. There are large gaps in the current knowledge of their geographic distribution and prevalence in both their vectors and hosts. Our aim was to develop reliable and easy detection method for both these pathogens. We made a new hydrolysis probe based duplex Real-Time PCR assay based on previous studies. We optimized the assays and tested them to provide reliable recommended procedures with a sensitivity to a minimum of 10 target DNA copies per sample. The assays were designed to be specific for A. phagocytophilum and in the same reaction detect multiple species of rickettsiae. We designed gBlock quantification standards that provide the option to identify differences in pathogen load among different samples in subsequent studies.
- MeSH
- Anaplasma phagocytophilum izolace a purifikace MeSH
- DNA bakterií analýza MeSH
- hydrolýza MeSH
- klíště mikrobiologie MeSH
- polymerázová řetězová reakce metody MeSH
- Rickettsia izolace a purifikace MeSH
- senzitivita a specificita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Rickettsia rickettsii is the causative agent of Brazilian spotted fever (BSF), for which humans and dogs are both susceptible. Dogs are sentinels in serological surveys, however, canine disease is rarely reported. Therefore, we aimed to evaluate natural infection by spotted fever group (SFG) Rickettsia spp. in dogs and ticks collected from domiciles close to forest fragments, featuring domestic-wildlife interface areas. Samples from 115 dogs and 135 ixodids were assessed by polymerase chain reactions (PCR) targeting the gltA gene for Rickettsia spp. and the ompA gene for the SFG rickettsial species. One dog (0.87%; 1/115) was positive for R. rickettsii. This dog presented nonspecific laboratory and clinical abnormalities (thrombocytopenia, hyperproteinemia, lymph node enlargement, emaciation, anorexia, and lethargy). Rickettsia parkeri was identified in 2.96% (4/135) of the ticks (Amblyomma sculptum, A. aureolatum, and Rhipicephalus sanguineus). This study confirmed the presence of SFG bacteria in non-endemic and preserved locations, where domestic and wild populations interact. We reinforce the fact that the dog is susceptible to natural R. rickettsii infection. Although this is a rare finding, preventive measures should be taken against BSF in the studied areas. Finally, R. parkeri infection is possibly being demonstrated in A. sculptum for the first time.
- MeSH
- klíšťata mikrobiologie MeSH
- nemoci psů diagnóza mikrobiologie MeSH
- polymerázová řetězová reakce MeSH
- protilátky bakteriální krev MeSH
- psi MeSH
- Rickettsia klasifikace genetika izolace a purifikace MeSH
- skvrnité horečky diagnóza mikrobiologie veterinární MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Brazílie MeSH
Companion animals can be infested by various species of parasitic insects. Cat flea Ctenocephalides felis (C. felis felis) (Bouché, 1835) and dog flea Ctenocephalides canis (Curtis, 1826) belong to multihost external parasites of mammals, which most frequently occur on domestic cats Felis catus Linnaeus and dogs Canis familiaris Linnaeus. The main aim of this study was to investigate the presence of pathogens, such as Anaplasma phagocytophilum (syn. Ehrlichia phagocytophila) and Rickettsia spp., in adult C. felis and C. canis fleas. Flea sampling has been realised from January 2013 to April 2017 in veterinary clinics, animal shelters and pet grooming salons. Fleas were collected from domestic cats and dogs, directly from the pet skin or hair. Then, the DNA was isolated from a single flea by using the alkaline hydrolysis and samples were screened for the presence of pathogens using PCR method. Anaplasma phagocytophilum has occurred in 29% of examined C. felis and 16% of C. canis individuals. In turn, the prevalence of Rickettsia spp. in cat fleas population was only 3%, and the dog fleas 7%. The present study showed the presence of pathogenic agents in cat and dog fleas, which indicates the potential role of these insects in circulation of A. phagocytophilum and Rickettsia spp. in the natural habitat. Furthermore, exposition to these flea species, whose hosts are domestic cats and dogs, can pose a potential risk of infection for humans.
- MeSH
- Anaplasma phagocytophilum izolace a purifikace MeSH
- Ctenocephalides mikrobiologie MeSH
- Rickettsia izolace a purifikace MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Polsko MeSH
Fleas (Siphonaptera) are ubiquitous blood-sucking parasites that transmit a range of vector-borne pathogens. The present study examined rodents (n = 29) and domestic dogs (n = 7) living in the vicinity of the Volcanoes National Park, Rwanda, for fleas, identified flea species from these hosts, and detected Bartonella (Rhizobiales: Bartonellaceae) and Rickettsia (Rickettsiales: Rickettsiaceae) DNA. The most frequently encountered flea on rodents was Xenopsylla brasiliensis (Siphonaptera: Pulicidae). In addition, Ctenophthalmus (Ethioctenophthalmus) calceatus cabirus (Siphonaptera: Hystrichopsyllidae) and Ctenocephalides felis strongylus (Siphonaptera: Pulicidae) were determined using morphology and sequencing of the cytochrome c oxidase subunit I and cytochrome c oxidase subunit II genes (cox1 and cox2, respectively). Bartonella tribocorum DNA was detected in X. brasiliensis and Rickettsia asembonensis DNA (a Rickettsia felis-like organism) was detected in C. felis strongylus. The present work complements studies that clarify the distributions of flea-borne pathogens and potential role of fleas in disease transmission in sub-Saharan Africa. In the context of high-density housing in central sub-Saharan Africa, the detection of B. tribocorum and R. asembonensis highlights the need for surveillance in both rural and urban areas to identify likely reservoirs.
- MeSH
- Bartonella izolace a purifikace MeSH
- infestace blechami epidemiologie parazitologie veterinární MeSH
- nemoci hlodavců epidemiologie parazitologie MeSH
- nemoci psů epidemiologie parazitologie MeSH
- prevalence MeSH
- psi MeSH
- Rickettsia izolace a purifikace MeSH
- Siphonaptera mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- psi MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Rwanda MeSH
Migratory birds have an important role in transporting ticks and associated tick-borne pathogens over long distances. In this study, 2,793 migratory birds were captured by nets in a ringing station, located in northern Italy, and checked for the presence of ticks. Two-hundred and fifty-one ticks were identified as nymphs and larvae of Ixodes ricinus (Linnaeus, 1758) and they were PCR-screened for the presence of bacteria belonging to Borrelia burgdorferi sensu lato, Rickettsia spp., Francisella tularensis and Coxiella burnetii. Four species of Borrelia (B. garinii, B. afzelii, B. valaisiana and B. lusitaniae) and three species of Rickettsia (R. monacensis, R. helvetica and Candidatus Rickettsia mendelii) were detected in 74 (30%) and 25 (10%) respectively out of 251 ticks examined. Co-infection with Borrelia spp. and Rickettsia spp. in the same tick sample was encountered in 7 (7%) out of the 99 infected ticks. We report for the first time the presence of Candidatus Rickettsia mendelii in I. ricinus collected on birds in Italy. This study, besides confirming the role of birds in dispersal of I. ricinus, highlights an important route by which tick-borne pathogens might spread across different countries and from natural environments towards urbanised areas.
- MeSH
- Bacteria izolace a purifikace MeSH
- Borrelia izolace a purifikace MeSH
- infestace klíšťaty epidemiologie parazitologie veterinární MeSH
- klíště růst a vývoj mikrobiologie MeSH
- larva mikrobiologie MeSH
- migrace zvířat MeSH
- nemoci ptáků epidemiologie parazitologie MeSH
- nymfa mikrobiologie MeSH
- prevalence MeSH
- Rickettsia izolace a purifikace MeSH
- zpěvní ptáci * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Itálie MeSH
In the last two decades, the advent of molecular methods has revealed a remarkable diversity of rickettsiae (Rickettsiales: Rickettsiaceae) in invertebrates. Several species of these obligate intracellular bacteria are known to cause human infections, hence more attention has been directed towards human-biting ectoparasites. A spotted fever group Rickettsia sp. was previously detected in Ixodes lividus ticks (Ixodidae) associated with sand martins (Hirundinidae: Riparia riparia). In order to identify whether this rickettsia varies among isolated tick populations, a total of 1758 I. lividus ticks and five Ixodes ricinus ticks (Ixodidae) were collected in the Czech Republic and 148 I. lividus ticks were collected in Belgium, from nests of sand martins, European bee-eaters (Meropidae: Merops apiaster), Eurasian tree sparrows (Passeridae: Passer montanus), and from captured sand martins. We screened 165 and 78 I. lividus ticks (from the Czech Republic and Belgium, respectively) and all five I. ricinus ticks for the presence of rickettsial DNA. Only I. lividus samples were positive for Rickettsia vini, a spotted fever group rickettsia that commonly infects the tree-hole tick Ixodes arboricola (Ixodidae). Maximum likelihood analysis of the rickettsial sequences showed that the most closely related organism to R. vini corresponds to an uncharacterized rickettsia detected in Argas lagenoplastis (Argasidae), a nidicolous soft tick of the fairy martin (Hirundinidae: Petrochelidon ariel) in Australia. The observed variability of R. vini sequences from isolated tick populations was low; all 85 sequenced samples were identical to each other in five out of six partial rickettsial genes, except for the sca4 sequence (99.9% identity, 808/809 nt) that differed in I. lividus ticks from two sampling sites in the Czech Republic.
- MeSH
- Argasidae mikrobiologie MeSH
- DNA bakterií genetika MeSH
- fylogeneze MeSH
- infestace klíšťaty epidemiologie veterinární MeSH
- klíště mikrobiologie MeSH
- koevoluce genetika MeSH
- lidé MeSH
- nemoci ptáků mikrobiologie MeSH
- nymfa MeSH
- pravděpodobnostní funkce MeSH
- ptáci parazitologie MeSH
- Rickettsia klasifikace genetika izolace a purifikace MeSH
- rickettsiové infekce epidemiologie mikrobiologie veterinární MeSH
- skvrnité horečky epidemiologie mikrobiologie veterinární MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Belgie epidemiologie MeSH
- Česká republika epidemiologie MeSH
The genus Rickettsia (Rickettsiales: Rickettsiaceae) includes Gram-negative, small, obligate intracellular, nonmotile, pleomorphic coccobacilli bacteria transmitted by arthropods. Some of them cause human and probably also animal disease (life threatening in some patients). In these guidelines, we give clinical practice advices (microscopy, serology, molecular tools, and culture) for the microbiological study of these microorganisms in clinical samples. Since in our environment rickettsioses are mainly transmitted by ticks, practical information for the identification of these arthropods and for the study of Rickettsia infections in ticks has also been added.
- MeSH
- bakteriologické techniky MeSH
- členovci - vektory mikrobiologie MeSH
- lidé MeSH
- odběr biologického vzorku MeSH
- Rickettsia izolace a purifikace MeSH
- rickettsiové infekce diagnóza mikrobiologie MeSH
- sérologické testy MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- směrnice pro lékařskou praxi MeSH
The objective of this study was to screen and identify rickettsial organisms in ectoparasites collected from dogs in a shelter in Gomez Palacio, Durango, Mexico. One hundred dogs were inspected for ectoparasites. All the dogs were parasitized with Rhipicephalus sanguineus ticks, three with Heterodoxus spiniger lice and one with Ctenocephalides felis fleas. DNA was extracted from the ectoparasites found on each dog, and PCR with the primers for the Anaplasmataceae 16S rRNA and citrate synthase gltA genes were performed. Eight DNA samples obtained from ticks, three from lice and one from fleas were positive to 16S rRNA. Only one sample from C. felis and one from H. spiniger were positive to gltA. Sequence analysis of amplified products from C. felis showed identity to Rickettsia felis, Wolbachia pipientis, and Wolbachia spp., while a sequence from H. spiniger showed identity to Wolbachia spp. Herein we report the molecular detection of R. felis, W. pipientis, and Wolbachia spp. in C. felis and H. spiniger in northern Mexico. These results contribute to the knowledge of the microorganisms present in ectoparasites from dogs in Mexico.
- MeSH
- bakteriální RNA genetika MeSH
- bydlení zvířat MeSH
- DNA bakterií genetika MeSH
- druhová specificita MeSH
- fylogeneze MeSH
- infestace ektoparazity epidemiologie parazitologie veterinární MeSH
- klíšťata mikrobiologie MeSH
- nemoci psů epidemiologie parazitologie MeSH
- Phthiraptera mikrobiologie MeSH
- polymerázová řetězová reakce MeSH
- psi MeSH
- Rickettsia genetika izolace a purifikace MeSH
- RNA ribozomální 16S genetika MeSH
- sekvence nukleotidů MeSH
- Siphonaptera mikrobiologie MeSH
- zvířata MeSH
- Check Tag
- psi MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Ixodes ricinus ticks are vectors of numerous human and animal pathogens. They are host generalists able to feed on more than 300 vertebrate species. The prevalence of tick-borne pathogens is influenced by host-vector-pathogen interactions that results in spatial distribution of infection risk. Broad-range polymerase chain reaction electrospray ionization mass spectrometry (PCR/ESI-MS) was used to analyze 435 I. ricinus nymphs from four localities in the south of the Czech Republic for the species identification of tick-borne pathogens. Borrelia burgdorferi sensu lato spirochetes were the most common pathogen detected in the ticks; 21% of ticks were positive for a single genospecies and 2% were co-infected with two genospecies. Other tick-borne pathogens detected included Rickettsia helvetica (3.9%), R. monacensis (0.2%), Anaplasma phagocytophilum (2.8%), Babesia venatorum (0.9%), and Ba. microti (0.5%). The vertebrate host of the ticks was determined using PCR followed by reverse line blot hybridization from the tick's blood-meal remnants. The host was identified for 61% of ticks. DNA of two hosts was detected in 16% of samples with successful host identification. The majority of ticks had fed on artiodactyls (50.7%) followed by rodents (28.6%) and birds (7.8%). Other host species were wild boar, deer, squirrels, field mice and voles.
- MeSH
- Anaplasma phagocytophilum genetika izolace a purifikace MeSH
- Artiodactyla MeSH
- Arvicolinae MeSH
- Babesia klasifikace genetika izolace a purifikace MeSH
- Borrelia burgdorferi genetika izolace a purifikace MeSH
- infestace klíšťaty * MeSH
- klíště mikrobiologie parazitologie MeSH
- lidé MeSH
- myši MeSH
- průzkumy a dotazníky MeSH
- ptáci MeSH
- Rickettsia klasifikace genetika izolace a purifikace MeSH
- Sciuridae MeSH
- Sus scrofa MeSH
- vysoká zvěř MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
- Geografické názvy
- Česká republika MeSH