Cartan curvature Dotaz Zobrazit nápovědu
Continuous monitoring of the intracranial pressure (ICP) is essential in neurocritical care. There are a variety of ICP monitoring systems currently available, with the intraventricular fluid filled catheter transducer currently representing the "gold standard". As the placement of catheters is associated with the attendant risk of infection, hematoma formation, and seizures, there is a need for a reliable, non-invasive alternative. In the present study we suggest a unique theoretical framework based on differential geometry invariants of cranial micro-motions with the potential for continuous non-invasive ICP monitoring in conservative traumatic brain injury (TBI) treatment. As a proof of this concept, we have developed a pillow with embedded mechanical sensors and collected an extensive dataset (> 550 h on 24 TBI coma patients) of cranial micro-motions and the reference intraparenchymal ICP. From the multidimensional pulsatile curve we calculated the first Cartan curvature and constructed a "fingerprint" image (Cartan map) associated with the cerebrospinal fluid (CSF) dynamics. The Cartan map features maxima bands corresponding to a pressure wave reflection corresponding to a detectable skull tremble. We give evidence for a statistically significant and patient-independent correlation between skull micro-motions and ICP time derivative. Our unique differential geometry-based method yields a broader and global perspective on intracranial CSF dynamics compared to rather local catheter-based measurement and has the potential for wider applications.
- MeSH
- dospělí MeSH
- intrakraniální hypertenze patofyziologie MeSH
- intrakraniální tlak fyziologie MeSH
- lebka patofyziologie MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- monitorování fyziologických funkcí MeSH
- senioři MeSH
- traumatické poranění mozku patofyziologie MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND OBJECTIVES: Prediction of patient deterioration is essential in medical care, and its automation may reduce the risk of patient death. The precise monitoring of a patient's medical state requires devices placed on the body, which may cause discomfort. Our approach is based on the processing of long-term ballistocardiography data, which were measured using a sensory pad placed under the patient's mattress. METHODS: The investigated dataset was obtained via long-term measurements in retirement homes and intensive care units (ICU). Data were measured unobtrusively using a measuring pad equipped with piezoceramic sensors. The proposed approach focused on the processing methods of the measured ballistocardiographic signals, Cartan curvature (CC), and Euclidean arc length (EAL). RESULTS: For analysis, 218,979 normal and 216,259 aberrant 2-second samples were collected and classified using a convolutional neural network. Experiments using cross-validation with expert threshold and data length revealed the accuracy, sensitivity, and specificity of the proposed method to be 86.51 CONCLUSIONS: The proposed method provides a unique approach for an early detection of health concerns in an unobtrusive manner. In addition, the suitability of EAL over the CC was determined.
- MeSH
- balistokardiografie * MeSH
- lidé MeSH
- lůžka MeSH
- neuronové sítě (počítačové) * MeSH
- srdeční frekvence MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
Background and Objectives Automatic detection of breathing disorders plays an important role in the early signalization of respiratory diseases. Measuring methods can be based on electrocardiogram (ECG), sound, oximetry, or respiratory analysis. However, these approaches require devices placed on the human body or they are prone to disturbance by environmental influences. To solve these problems, we proposed a heart contraction mechanical trigger for unobtrusive detection of respiratory disorders from the mechanical measurement of cardiac contractions. We designed a novel method to calculate this mechanical trigger purely from measured mechanical signals without the use of ECG. Methods The approach is a built-on calculation of the so-called euclidean arc length from the signals. In comparison to previous researches, this system does not require any equipment attached to a person. This is achieved by locating the tensometers on the bed. Data from sensors are fused by the Cartan curvatures method to beat-to-beat vector input for the Convolutional neural network (CNN) classifier. Results In sum, 2281 disordered and 5130 normal breathing samples was collected for analysis. The experiments with use of 10-fold cross validation show that accuracy, sensitivity, and specificity reach values of 96.37%, 92.46%, and 98.11% respectively. Conclusions By the approach for detection, the system offers a novel way for a completely unobtrusive diagnosis of breathing-related health problems. The proposed solution can effectively be deployed in all clinical or home environments.
- MeSH
- algoritmy MeSH
- elektrokardiografie * MeSH
- lidé MeSH
- nemoci dýchací soustavy * MeSH
- neuronové sítě (počítačové) MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH