Cilium Dotaz Zobrazit nápovědu
- MeSH
- biogeneze organel * MeSH
- buněčná diferenciace * MeSH
- centrioly ultrastruktura MeSH
- centrozom ultrastruktura MeSH
- cilie * ultrastruktura MeSH
- dřeň nadledvin cytologie ultrastruktura MeSH
- elektronová mikroskopie MeSH
- epitelové buňky MeSH
- ganglion cervicale superius ultrastruktura MeSH
- krysa rodu rattus MeSH
- mikrotomie MeSH
- ovarium cytologie ultrastruktura MeSH
- testis cytologie ultrastruktura MeSH
- tumor karotického glomu ultrastruktura MeSH
- Check Tag
- krysa rodu rattus MeSH
Oral-facial-digital syndromes (OFDS) are a group of clinically and genetically heterogeneous disorders characterized by defects in the development of the face and oral cavity along with digit anomalies. Pathogenic variants in over 20 genes encoding ciliary proteins have been found to cause OFDS through deleterious structural or functional impacts on primary cilia. We identified by exome sequencing bi-allelic missense variants in a novel disease-causing ciliary gene RAB34 in four individuals from three unrelated families. Affected individuals presented a novel form of OFDS (OFDS-RAB34) accompanied by cardiac, cerebral, skeletal and anorectal defects. RAB34 encodes a member of the Rab GTPase superfamily and was recently identified as a key mediator of ciliary membrane formation. Unlike many genes required for cilium assembly, RAB34 acts selectively in cell types that use the intracellular ciliogenesis pathway, in which nascent cilia begin to form in the cytoplasm. We find that the protein products of these pathogenic variants, which are clustered near the RAB34 C-terminus, exhibit a strong loss of function. Although some variants retain the ability to be recruited to the mother centriole, cells expressing mutant RAB34 exhibit a significant defect in cilium assembly. While many Rab proteins have been previously linked to ciliogenesis, our studies establish RAB34 as the first small GTPase involved in OFDS and reveal the distinct clinical manifestations caused by impairment of intracellular ciliogenesis.
The transition zone (TZ) of eukaryotic cilia and flagella is a structural intermediate between the basal body and the axoneme that regulates ciliary traffic. Mutations in genes encoding TZ proteins (TZPs) cause human inherited diseases (ciliopathies). Here, we use the trypanosome to identify TZ components and localize them to TZ subdomains, showing that the Bardet-Biedl syndrome complex (BBSome) is more distal in the TZ than the Meckel syndrome (MKS) complex. Several of the TZPs identified here have human orthologs. Functional analysis shows essential roles for TZPs in motility, in building the axoneme central pair apparatus and in flagellum biogenesis. Analysis using RNAi and HaloTag fusion protein approaches reveals that most TZPs (including the MKS ciliopathy complex) show long-term stable association with the TZ, whereas the BBSome is dynamic. We propose that some Bardet-Biedl syndrome and MKS pleiotropy may be caused by mutations that impact TZP complex dynamics.
- MeSH
- Bardetův-Biedlův syndrom genetika metabolismus MeSH
- bazální tělíska metabolismus ultrastruktura MeSH
- cilie genetika metabolismus MeSH
- ciliopatie genetika metabolismus MeSH
- cytoskelet metabolismus ultrastruktura MeSH
- encefalokéla genetika metabolismus MeSH
- flagella genetika metabolismus ultrastruktura MeSH
- fluorescenční mikroskopie MeSH
- kompartmentace buňky MeSH
- lidé MeSH
- mutace MeSH
- polycystická choroba ledvin genetika metabolismus MeSH
- poruchy ciliární motility genetika metabolismus MeSH
- proteom genetika metabolismus MeSH
- protozoální proteiny genetika metabolismus MeSH
- RNA interference MeSH
- transmisní elektronová mikroskopie MeSH
- Trypanosoma genetika metabolismus ultrastruktura MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Vertebrate primary cilium is a Hedgehog signaling center but the extent of its involvement in other signaling systems is less well understood. This report delineates a mechanism by which fibroblast growth factor (FGF) controls primary cilia. Employing proteomic approaches to characterize proteins associated with the FGF-receptor, FGFR3, we identified the serine/threonine kinase intestinal cell kinase (ICK) as an FGFR interactor. ICK is involved in ciliogenesis and participates in control of ciliary length. FGF signaling partially abolished ICK's kinase activity, through FGFR-mediated ICK phosphorylation at conserved residue Tyr15, which interfered with optimal ATP binding. Activation of the FGF signaling pathway affected both primary cilia length and function in a manner consistent with cilia effects caused by inhibition of ICK activity. Moreover, knockdown and knockout of ICK rescued the FGF-mediated effect on cilia. We provide conclusive evidence that FGF signaling controls cilia via interaction with ICK.
- MeSH
- buňky NIH 3T3 MeSH
- cilie metabolismus MeSH
- CRISPR-Cas systémy MeSH
- fibroblastové růstové faktory metabolismus MeSH
- fosforylace MeSH
- HEK293 buňky MeSH
- interakční proteinové domény a motivy MeSH
- lidé MeSH
- modely u zvířat MeSH
- myši knockoutované MeSH
- myši MeSH
- protein-serin-threoninkinasy genetika metabolismus MeSH
- proteiny hedgehog metabolismus MeSH
- proteomika MeSH
- receptor fibroblastových růstových faktorů, typ 1 metabolismus MeSH
- receptor fibroblastových růstových faktorů, typ 3 genetika metabolismus MeSH
- receptor fibroblastových růstových faktorů, typ 4 metabolismus MeSH
- receptory fibroblastových růstových faktorů genetika metabolismus MeSH
- signální transdukce MeSH
- simulace molekulového dockingu MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, N.I.H., Extramural MeSH
Primary cilium is a solitary organelle that emanates from the surface of most postmitotic mammalian cells and serves as a sensory organelle, transmitting the mechanical and chemical cues to the cell. Primary cilia are key coordinators of various signaling pathways during development and maintenance of tissue homeostasis. The emerging evidence implicates primary cilia function in tooth development. Primary cilia are located in the dental epithelium and mesenchyme at early stages of tooth development and later during cell differentiation and production of hard tissues. The cilia are present when interactions between both the epithelium and mesenchyme are required for normal morphogenesis. As the primary cilium coordinates several signaling pathways essential for odontogenesis, ciliary defects can interrupt the latter process. Genetic or experimental alterations of cilia function lead to various developmental defects, including supernumerary or missing teeth, enamel and dentin hypoplasia, or teeth crowding. Moreover, dental phenotypes are observed in ciliopathies, including Bardet-Biedl syndrome, Ellis-van Creveld syndrome, Weyers acrofacial dysostosis, cranioectodermal dysplasia, and oral-facial-digital syndrome, altogether demonstrating that primary cilia play a critical role in regulation of both the early odontogenesis and later differentiation of hard tissue-producing cells. Here, we summarize the current evidence for the localization of primary cilia in dental tissues and the impact of disrupted cilia signaling on tooth development in ciliopathies.
- MeSH
- buněčná diferenciace fyziologie MeSH
- cilie fyziologie MeSH
- lidé MeSH
- maxilofaciální vývoj fyziologie MeSH
- odontogeneze fyziologie MeSH
- signální transdukce fyziologie MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Primární řasinka je senzorická, solitární, nepohyblivá, mikrotubulární struktura, která v klidové části buněčného cyklu vyrůstá na povrch většiny lidských buněk, včetně kmenových buněk mezenchymu, osteoblastů, osteocytů, chondroblastů, chondrocytů, fibroblastů a fibrocytů. Primární řasinky se vyskytují i na povrchu chondrocytů osteoartrotické chrupavky a buněk benigních i maligních nádorů pojivové tkáně včetně enchondromu, osteochondromu, osteosarkomu, chondrosarkomu a Ewingova sarkomu kosti. Bazálním tělískem primární řasinky je mateřský centriol. Tématem tohoto přehledového sdělení jsou současné poznatky o primárních řasinkách buněk pojivové tkáně.
The primary cilium is a sensory, solitary, non-motile microtubule-based structure protruding in the quiescent phase of the cell cycle from the surface of the majority of human cells, including mesenchymal stem cells, osteoblasts, osteocytes, chondroblasts, chondrocytes, fibroblasts, fibrocytes, chondrocytes of osteoarthritic cartillage, tumor cells of benign and malignant tumors of connective tissue, including enchondroma, osteochondroma, osteosarcoma, chondrosarcoma and Ewing bone sarcoma. Primary cilium is formed from the mother centriole. The aim of this paper is to provide a review of the current knowledge on the primary cilia in connective tissue cells.
- Klíčová slova
- epifyzodiafyzární ploténka, kostní nádory,
- MeSH
- buňky pojivové tkáně * MeSH
- chondrocyty metabolismus MeSH
- cilie * fyziologie metabolismus MeSH
- lidé MeSH
- nádory kostí etiologie metabolismus MeSH
- osteoartróza etiologie metabolismus MeSH
- osteochondrom etiologie metabolismus MeSH
- růstová ploténka fyziologie MeSH
- sarkom etiologie metabolismus MeSH
- vývoj kostí MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
Primární řasinka je mechanosenzorická, solitární, nepohyblivá, mikrotubulární struktura, která se v klidové části buněčného cyklu vyskytuje na povrchu většiny lidských buněk, včetně buněk embryonálních, kmenových, mezenchymálních, fibroblastů, myoblastů, kardiomyocytů, hladkých svalových buněk (leiomyocytů) cévní stěny a buněk endotelu. Primární řasinky se ve zvýšené frekvenci nacházejí i na povrchu buněk endotelu v predilekčních místech aterosklerózy, lipoidních proužků a skvrn a ateromových plátů. Bazálním tělískem primární řasinky je mateřský centriol. V současné době se studuje význam primárních řasinek v mechanobiologii kardiovaskulárního aparátu a jejich vztah k migraci buněk, kontrole buněčného cyklu a aterogenezi. Tématem tohoto přehledového sdělení jsou současné poznatky o primárních řasinkách buněk kardiovaskulárního aparátu. Klíčová slova: primární řasinky – kardiomyocyty – buňky endotelu – hladké svalové buňky (leiomyocyty) cévní stěny – ateroskleróza
The primary cilium is a mechanosensory, solitary, non-motile microtubule-based structure that in the quiescent phase of the cell cycle projects from the surface of the majority of human cells, including embryonal, stem and mesenchymal cells, fibroblasts, myoblasts, cardiomyocytes, vascular smooth muscle and endothelial cells. Primary cilia are in increased frequency also present on the surface of endothelial cells in atherosclerotic predilection sites, lipoid streaks and dots and atheromatous plaques. The primary cilium is formed from the mother centriole. Primary cilia are currently studied in mechanobiology of cardiovascular apparatus and their role in cell migration, cell cycle control and atherogenesis. The aim of this paper is to provide a review of the current knowledge on the primary cilia of cells of cardiovascular apparatus.
- Klíčová slova
- hladké svalové buňky (leiomyocyty) cévní stěny, buňky endotelu,
- MeSH
- aorta MeSH
- ateroskleróza patofyziologie MeSH
- buněčný převod mechanických signálů fyziologie MeSH
- cévní endotel * cytologie fyziologie MeSH
- cilie * fyziologie patologie MeSH
- endoteliální buňky fyziologie patologie MeSH
- epitelo-mezenchymální tranzice fyziologie MeSH
- kardiomyocyty fyziologie MeSH
- lidé MeSH
- mechanický stres MeSH
- myocyty hladké svaloviny patologie MeSH
- pevnost ve smyku MeSH
- svaly hladké cévní * fyziologie patofyziologie patologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- práce podpořená grantem MeSH
- přehledy MeSH
A single primary cilium projects from most vertebrate cells to guide cell fate decisions. A growing list of signaling molecules is found to function through cilia and control ciliogenesis, including the fibroblast growth factor receptors (FGFR). Aberrant FGFR activity produces abnormal cilia with deregulated signaling, which contributes to pathogenesis of the FGFR-mediated genetic disorders. FGFR lesions are also found in cancer, raising a possibility of cilia involvement in the neoplastic transformation and tumor progression. Here, we focus on FGFR gene fusions, and discuss the possible mechanisms by which they function as oncogenic drivers. We show that a substantial portion of the FGFR fusion partners are proteins associated with the centrosome cycle, including organization of the mitotic spindle and ciliogenesis. The functions of centrosome proteins are often lost with the gene fusion, leading to haploinsufficiency that induces cilia loss and deregulated cell division. We speculate that this complements the ectopic FGFR activity and drives the FGFR fusion cancers.
- MeSH
- centrozom metabolismus MeSH
- cilie * metabolismus patologie MeSH
- lidé MeSH
- nádorová transformace buněk patologie MeSH
- nádory * metabolismus patologie MeSH
- onkogenní fúze MeSH
- receptory fibroblastových růstových faktorů metabolismus MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
European journal of respiratory diseases, ISSN 0106-4347 suppl. no. 151, vol. 71, 1987
39 s. : il. ; 24 cm
- Konspekt
- Patologie. Klinická medicína
- NLK Obory
- pneumologie a ftizeologie
- fyziologie