Enterobacter cloacae Dotaz Zobrazit nápovědu
In the present study, bacterial isolates were screened for arsenic resistance efficiency. Environmental isolates were isolated from arsenic-rich soil samples (i.e., from Rajnandgaon district of Chhattisgarh state, India). Amplification and sequencing of 16S rRNA gene revealed that the isolates were of Bacillus firmus RSN1, Brevibacterium senegalense RSN2, Enterobacter cloacae RSN3, Stenotrophomonas pavanii RSN6, Achromobacter mucicolens RSN7, and Ochrobactrum intermedium RSN10. Arsenite efflux gene (arsB) was successfully amplified in E. cloacae RSN3. Atomic absorption spectroscopy (AAS) analysis showed an absorption of 32.22% arsenic by the RSN3 strain. Furthermore, results of scanning electron microscopy (SEM) for morphological variations revealed an initial increase in the cell size at 1 mM sodium arsenate; however, it was decreased at 10 mM concentration in comparison to control. This change of the cell size in different metal concentrations was due to the uptake and expulsion of the metal from the cell, which also confirmed the arsenite efflux system.
Reducing bacterial pathogen contamination not only improves overall global public health but also diminishes food waste and loss. The use of lytic bacteriophages (phages) that infect and kill bacteria could be a beneficial tool for suppressing bacterial growth during dairy products storage time. Four Enterobacter cloacae (E. cloacae) complex isolates which were previously isolated from contaminated dairy products were used to identify lytic phages in wastewater. Phages specific to multi-drug resistant (MDR) E. cloacae complex 6AS1 were isolated from local sewage. Two novel phages vB_EclM-EP1 and vB_EclM-EP2 were identified as myoviral particles and have double-stranded DNA genome. Their host range and lytic capabilities were detected using spot test and efficiency of plating (EOP) against several bacterial isolates. The phages had a latent period of 30 min, and a large burst size of about 100 and 142 PFU/cell for vB_EclM-EP1 and vB_EclM-EP2, respectively. Both phages were viable at pH ranging 5-9 and stable at 70 °C for 60 min. The individual phages and their cocktail preparations (vB_EclM-EP1 and vB_EclM-EP2) reduced and inhibited the growth of E. cloacae complex 6AS1 during challenge test in milk and yogurt samples. These results indicate that the E. cloacae complex-specific phages (vB_EclM-EP1 and vB_EclM-EP2) have a potential application as microbicidal agents in packaged milk and milk derivatives during storage time. In addition, our environment is a rich sources of lytic phages which have potential use in eliminating multidrug-resistant isolates in food industry as well as in biocontrol.
- MeSH
- bakteriofágy * genetika MeSH
- Enterobacter cloacae MeSH
- jogurt MeSH
- mléko mikrobiologie MeSH
- odpadky - odstraňování * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
ST252 Enterobacter cloacae, producing GES-5 carbapenemase, was isolated in a Czech hospital. blaGES-5was part of a novel class 1 integron, In1406, which also included a new allele of the aadA15 gene cassette. In1406 was located on a ColE2-like plasmid, pEcl-35771cz (6953bp).
- MeSH
- bakteriální proteiny genetika MeSH
- beta-laktamasy genetika MeSH
- Enterobacter cloacae enzymologie genetika MeSH
- enterobakteriální infekce mikrobiologie MeSH
- integrony genetika MeSH
- lidé MeSH
- multilokusová sekvenční typizace MeSH
- nemocnice MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH