Forest structure Dotaz Zobrazit nápovědu
Forests are essential biomes for global biogeochemical cycles, and belowground microorganisms have a key role in providing relevant ecosystem services. To predict the effects of environmental changes on these ecosystem services requires a comprehensive understanding of how biotic and abiotic factors drive the composition of microbial communities in soil. However, microorganisms are not homogeneously distributed in complex environments such as soil, with different features affecting microbes at different extent depending on the niche they occupy. Indeed, this spatial heterogeneity hampers the extrapolation of microbial diversity study results from particular habitats to the ecosystem level, even if the resolution of the more recent studies has increased significantly after the standardization of high-throughput sequencing techniques. The present work intends to give a comprehensive view of the knowledge accumulated until date defining the more important drivers determining the structure of forest soil microbial communities from fine to continental scales.
- MeSH
- Bacteria MeSH
- ekosystém * MeSH
- lesy * MeSH
- mikrobiota fyziologie MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
Deforestation has a large impact on soil fertility, especially on steep slopes, but by applying sustainable management practices, local communities in Oaxaca (Mexico) have tried to avoid the most negative effects on the forest ecosystems they manage. In this study, the characteristics and bacterial community structure were investigated from soil sampled in triplicate (n = 3) with different land use, i.e., arable, natural forest, sustainable managed, and reforested soil. The pH was significantly higher in the arable (6.2) than in the forest soils (≤ 5.3), while the organic matter was > 2 times higher in the natural forest (80.4 g/kg) and sustainable managed soil (86.3 g/kg) than in the arable (36.8 g/kg) and cleared and reforested soil (39.3 g/kg). The higher organic matter content in the first two soils was due to leaf litter, absent in the other soils. The species richness (q = 0), the typical (q = 1) and dominant bacteria (q = 2) were not affected significantly by land use. The beta diversity, however, showed a significant effect of land use on species richness (p = 0.0029). Proteobacteria (40.135%) and Actinobacteria (20.15%) were the dominant bacterial phyla, and Halomonas (14.50%) and the Verrucomicrobia DA101 (3.39%) were the dominant genera. The bacterial communities were highly significantly different in soil with different land use considering the taxonomic level of genus and OTUs (p ≤ 0.003). It was found that the sustainable managed forest provided the local community with sellable wood while maintaining the soil organic matter content, i.e., sequestered C and without altering the bacterial community structure.
- MeSH
- Actinobacteria * genetika MeSH
- Bacteria genetika MeSH
- ekosystém * MeSH
- lesy MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
In the current context of climate change, the study of microbial communities along altitudinal gradients is especially useful. Only few studies considered altitude and season at the same time. We characterized four forest sites located in the Italian Alps, along an altitude gradient (545-2000 m a.s.l.), to evaluate the effect of altitude in spring and autumn on soil microbial properties. Each site in each season was characterized with regard to soil temperature, physicochemical properties, microbial activities (respiration, enzymes), community level physiological profiles (CLPP), microbial abundance and community structure (PLFA). Increased levels of soil organic matter (SOM) and nutrients were found at higher altitudes and in autumn, resulting in a significant increase of (soil dry-mass related) microbial activities and abundance at higher altitudes. Significant site- and season-specific effects were found for enzyme production. The significant interaction of the factors site and incubation temperature for soil microbial activities indicated differences in microbial communities and their responses to temperature among sites. CLPP revealed site-specific effects. Microbial community structure was influenced by altitudinal, seasonal and/or site-specific effects. Correlations demonstrated that altitude, and not season, was the main factor determining the changes in abiotic and biotic characteristics at the sites investigated.
- MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- biodiverzita * MeSH
- fylogeneze MeSH
- klimatické změny MeSH
- lesy MeSH
- nadmořská výška MeSH
- půda chemie MeSH
- půdní mikrobiologie * MeSH
- roční období MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Itálie MeSH
Terrestrial laser scanning is a powerful technology for capturing the three-dimensional structure of forests with a high level of detail and accuracy. Over the last decade, many algorithms have been developed to extract various tree parameters from terrestrial laser scanning data. Here we present 3D Forest, an open-source non-platform-specific software application with an easy-to-use graphical user interface with the compilation of algorithms focused on the forest environment and extraction of tree parameters. The current version (0.42) extracts important parameters of forest structure from the terrestrial laser scanning data, such as stem positions (X, Y, Z), tree heights, diameters at breast height (DBH), as well as more advanced parameters such as tree planar projections, stem profiles or detailed crown parameters including convex and concave crown surface and volume. Moreover, 3D Forest provides quantitative measures of between-crown interactions and their real arrangement in 3D space. 3D Forest also includes an original algorithm of automatic tree segmentation and crown segmentation. Comparison with field data measurements showed no significant difference in measuring DBH or tree height using 3D Forest, although for DBH only the Randomized Hough Transform algorithm proved to be sufficiently resistant to noise and provided results comparable to traditional field measurements.
- MeSH
- algoritmy MeSH
- automatizace MeSH
- lesy * MeSH
- zobrazování trojrozměrné * MeSH
- Publikační typ
- časopisecké články MeSH
In fragmented landscapes, plant species richness may depend not only on local habitat conditions but also on landscape structure. In addition, both present and past landscape structure may be important for species richness. There are, however, only a few studies that have investigated the relative importance of all of these factors. The aim of this study was to examine the effect of current and past landscape structures and habitat conditions on species richness at dry grassland-like forest openings in a forested landscape and to assess their relative importance for species richness. We analyzed information on past and present landscape structures using aerial photographs from 1938, 1973, 1988, 2000 and 2007. We calculated the area of each locality and its isolation in the present and in the past and the continuity of localities in GIS. At each locality, we recorded all vascular plant species (296 species in 110 forest openings) and information on abiotic conditions of the localities. We found that the current species richness of the forest openings was significantly determined by local habitat conditions as well as by landscape structure in the present and in the past. The highest species richness was observed on larger and more heterogeneous localities with rocks and shallow soils, which were already large and well connected to other localities in 1938. The changes in the landscape structure in the past can thus have strong effects on current species richness. Future studies attempting to understand determinants of species diversity in fragmented landscapes should also include data on past landscape structure, as it may in fact be more important than the present structure.
- MeSH
- biodiverzita * MeSH
- lesy * MeSH
- pastviny * MeSH
- rostliny * MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Coniferous forests cover extensive areas of the boreal and temperate zones. Owing to their primary production and C storage, they have an important role in the global carbon balance. Forest disturbances such as forest fires, windthrows or insect pest outbreaks have a substantial effect on the functioning of these ecosystems. Recent decades have seen an increase in the areas affected by disturbances in both North America and Europe, with indications that this increase is due to both local human activity and global climate change. Here we examine the structural and functional response of the litter and soil microbial community in a Picea abies forest to tree dieback following an invasion of the bark beetle Ips typographus, with a specific focus on the fungal community. The insect-induced disturbance rapidly and profoundly changed vegetation and nutrient availability by killing spruce trees so that the readily available root exudates were replaced by more recalcitrant, polymeric plant biomass components. Owing to the dramatic decrease in photosynthesis, the rate of decomposition processes in the ecosystem decreased as soon as the one-time litter input had been processed. The fungal community showed profound changes, including a decrease in biomass (2.5-fold in the litter and 12-fold in the soil) together with the disappearance of fungi symbiotic with tree roots and a relative increase in saprotrophic taxa. Within the latter group, successive changes reflected the changing availability of needle litter and woody debris. Bacterial biomass appeared to be either unaffected or increased after the disturbance, resulting in a substantial increase in the bacterial/fungal biomass ratio.
- MeSH
- biomasa MeSH
- brouci fyziologie MeSH
- houby klasifikace izolace a purifikace MeSH
- lesy * MeSH
- půdní mikrobiologie * MeSH
- smrk MeSH
- stromy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Microbial activity in forest soils is driven by the dynamics of ecosystem processes, largely dependent on trees as the major primary producers. Diurnal variation of root activity, seasonality of photosynthate production or recalcitrance of decomposing plant biomass all affect microbial abundance, composition of their communities and activity. Due to low N content, fungi appear to be the major decomposers of complex plant biomass: litter and deadwood and to largely shape associated bacterial communities and their activity. On the other hand, bacteria are important in decomposition of fungal mycelia and N-cycle processes including N-fixation. Microbial activity is also affected in the short term by climatic events and in the long-term by ecosystem development after disturbances.
Dead wood represents an important pool of organic matter in forests and is one of the sources of soil formation. It has been shown to harbour diverse communities of bacteria, but their roles in this habitat are still poorly understood. Here, we describe the bacterial communities in the dead wood of Abies alba, Picea abies and Fagus sylvatica in a temperate natural forest in Central Europe. An analysis of environmental factors showed that decomposing time along with pH and water content was the strongest drivers of community composition. Bacterial biomass positively correlated with N content and increased with decomposition along with the concurrent decrease in the fungal/bacterial biomass ratio. Rhizobiales and Acidobacteriales were abundant bacterial orders throughout the whole decay process, but many bacterial taxa were specific either for young (<15 years) or old dead wood. During early decomposition, bacterial genera able to fix N2 and to use simple C1 compounds (e.g. Yersinia and Methylomonas) were frequent, while wood in advanced decay was rich in taxa typical of forest soils (e.g. Bradyrhizobium and Rhodoplanes). Although the bacterial contribution to dead wood turnover remains unclear, the community composition appears to reflect the changing conditions of the substrate and suggests broad metabolic capacities of its members.
- MeSH
- Bacteria klasifikace genetika izolace a purifikace MeSH
- biodiverzita MeSH
- biomasa MeSH
- buk (rod) mikrobiologie MeSH
- dřevo mikrobiologie MeSH
- ekosystém MeSH
- houby klasifikace genetika izolace a purifikace MeSH
- jedle mikrobiologie MeSH
- lesy MeSH
- mikrobiota genetika MeSH
- půda chemie MeSH
- půdní mikrobiologie MeSH
- smrk mikrobiologie MeSH
- stromy mikrobiologie MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Evropa MeSH
Vaccinia virus (VACV), the prototype member of the Poxviridae, replicates in the cytoplasm of an infected cell. The catalytic subunit of the DNA polymerase E9 binds the heterodimeric processivity factor A20/D4 to form the functional polymerase holoenzyme. Here we present the crystal structure of full-length E9 at 2.7 Å resolution that permits identification of important poxvirus-specific structural insertions. One insertion in the palm domain interacts with C-terminal residues of A20 and thus serves as the processivity factor-binding site. This is in strong contrast to all other family B polymerases that bind their co-factors at the C terminus of the thumb domain. The VACV E9 structure also permits rationalization of polymerase inhibitor resistance mutations when compared with the closely related eukaryotic polymerase delta-DNA complex.
- MeSH
- DNA vazebné proteiny genetika MeSH
- DNA-dependentní DNA-polymerasy genetika ultrastruktura MeSH
- DNA-glykosylasy genetika MeSH
- katalytická doména genetika MeSH
- krystalografie rentgenová MeSH
- nukleosidtrifosfatasa genetika MeSH
- virus vakcinie enzymologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Vertical niche partitioning might be one of the main driving forces explaining the high diversity of forest ecosystems. However, the forest's vertical dimension has received limited investigation, especially in temperate forests. Thus, our knowledge about how communities are vertically structured remains limited for temperate forest ecosystems. In this study, we investigated the vertical structuring of an arboreal caterpillar community in a temperate deciduous forest of eastern North America. Within a 0.2-ha forest stand, all deciduous trees ≥ 5 cm diameter at breast height (DBH) were felled and systematically searched for caterpillars. Sampled caterpillars were assigned to a specific stratum (i.e. understory, midstory, or canopy) depending on their vertical position and classified into feeding guild as either exposed feeders or shelter builders (i.e. leaf rollers, leaf tiers, webbers). In total, 3892 caterpillars representing 215 species of butterflies and moths were collected and identified. While stratum had no effect on caterpillar density, feeding guild composition changed significantly with shelter-building caterpillars becoming the dominant guild in the canopy. Species richness and diversity were found to be highest in the understory and midstory and declined strongly in the canopy. Family and species composition changed significantly among the strata; understory and canopy showed the lowest similarity. Food web analyses further revealed an increasing network specialization towards the canopy, caused by an increase in specialization of the caterpillar community. In summary, our study revealed a pronounced stratification of a temperate forest caterpillar community, unveiling a distinctly different assemblage of caterpillars dwelling in the canopy stratum.
- MeSH
- biodiverzita * MeSH
- ekosystém * MeSH
- lesy MeSH
- stromy MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Severní Amerika MeSH