Hif1a Dotaz Zobrazit nápovědu
BACKGROUND: Epidemiological studies show that maternal diabetes predisposes offspring to cardiovascular and metabolic disorders. However, the precise mechanisms for the underlying penetrance and disease predisposition remain poorly understood. We examined whether hypoxia-inducible factor 1 alpha, in combination with exposure to a diabetic intrauterine environment, influences the function and molecular structure of the adult offspring heart. METHODS AND RESULTS: In a mouse model, we demonstrated that haploinsufficient (Hif1a+/-) offspring from a diabetic pregnancy developed left ventricle dysfunction at 12 weeks of age, as manifested by decreased fractional shortening and structural remodeling of the myocardium. Transcriptional profiling by RNA-seq revealed significant transcriptome changes in the left ventricle of diabetes-exposed Hif1a+/- offspring associated with development, metabolism, apoptosis, and blood vessel physiology. In contrast, both wild type and Hif1a+/- offspring from diabetic pregnancies showed changes in immune system processes and inflammatory responses. Immunohistochemical analyses demonstrated that the combination of haploinsufficiency of Hif1a and exposure to maternal diabetes resulted in impaired macrophage infiltration, increased levels of advanced glycation end products, and changes in vascular homeostasis in the adult offspring heart. CONCLUSIONS: Together our findings provide evidence that a global reduction in Hif1a gene dosage increases predisposition of the offspring exposed to maternal diabetes to cardiac dysfunction, and also underscore Hif1a as a critical factor in the fetal programming of adult cardiovascular disease.
- MeSH
- experimentální diabetes mellitus komplikace metabolismus patologie MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa genetika metabolismus MeSH
- funkce levé komory srdeční MeSH
- gestační diabetes * metabolismus patologie MeSH
- haploinsuficience MeSH
- interakce genů a prostředí MeSH
- kardiovaskulární nemoci genetika metabolismus patologie patofyziologie MeSH
- mutace * MeSH
- myokard metabolismus patologie MeSH
- myši knockoutované MeSH
- remodelace komor MeSH
- rizikové faktory MeSH
- těhotenství MeSH
- vývojová regulace genové exprese MeSH
- zpožděný efekt prenatální expozice * MeSH
- zvířata MeSH
- Check Tag
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
INTRODUCTION: Maternal diabetes is a recognized risk factor for both short-term and long-term complications in offspring. Beyond the direct teratogenicity of maternal diabetes, the intrauterine environment can influence the offspring's cardiovascular health. Abnormalities in the cardiac sympathetic system are implicated in conditions such as sudden infant death syndrome, cardiac arrhythmic death, heart failure, and certain congenital heart defects in children from diabetic pregnancies. However, the mechanisms by which maternal diabetes affects the development of the cardiac sympathetic system and, consequently, heightens health risks and predisposes to cardiovascular disease remain poorly understood. METHODS AND RESULTS: In the mouse model, we performed a comprehensive analysis of the combined impact of a Hif1a-deficient sympathetic system and the maternal diabetes environment on both heart development and the formation of the cardiac sympathetic system. The synergic negative effect of exposure to maternal diabetes and Hif1a deficiency resulted in the most pronounced deficit in cardiac sympathetic innervation and the development of the adrenal medulla. Abnormalities in the cardiac sympathetic system were accompanied by a smaller heart, reduced ventricular wall thickness, and dilated subepicardial veins and coronary arteries in the myocardium, along with anomalies in the branching and connections of the main coronary arteries. Transcriptional profiling by RNA sequencing (RNA-seq) revealed significant transcriptome changes in Hif1a-deficient sympathetic neurons, primarily associated with cell cycle regulation, proliferation, and mitosis, explaining the shrinkage of the sympathetic neuron population. DISCUSSION: Our data demonstrate that a failure to adequately activate the HIF-1α regulatory pathway, particularly in the context of maternal diabetes, may contribute to abnormalities in the cardiac sympathetic system. In conclusion, our findings indicate that the interplay between deficiencies in the cardiac sympathetic system and subtle structural alternations in the vasculature, microvasculature, and myocardium during heart development not only increases the risk of cardiovascular disease but also diminishes the adaptability to the stress associated with the transition to extrauterine life, thus increasing the risk of neonatal death.
- MeSH
- dítě MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa metabolismus MeSH
- gestační diabetes * metabolismus MeSH
- kardiovaskulární nemoci * metabolismus MeSH
- lidé MeSH
- myokard metabolismus MeSH
- myši MeSH
- novorozenec MeSH
- srdce MeSH
- srdeční selhání * MeSH
- těhotenství MeSH
- zvířata MeSH
- Check Tag
- dítě MeSH
- lidé MeSH
- myši MeSH
- novorozenec MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Cíl: Cílem studie bylo zhodnotit úlohu genu pro hypoxií indukovatelný faktor 1alfa (hypoxia-inducible factor 1alpha, HIF1A; gen 1772C>T, rs11549465) v antracyklinem vyvolaném srdečním selhání (anthracycline-induced heart failure, AIHF) u žen bez kardiovaskulárního onemocnění (KVO) v předchozí 24 měsících. Metody: Do studie bylo zařazeno celkem 114 žen s mediánem věku 47,0 (44,0; 52,0) roku s AIHF stupně I-III NYHA, jimž byl podáván doxorubicin pro karcinom prsu. Při vstupu do studie u nich bylo s použitím polymerázové řetězové reakce provedeno vyšetření na genový polymorfismus. Výsledky: Po 24měsíčním sledování vykázaly všechny pacientky remisi karcinomu prsu; byly rozděleny do dvou skupin: skupinu 1 tvořily ženy s nepříznivým průběhem AIHF (n = 36), skupinu 2 tvořily ženy bez AIHF (n = 75). Přítomnost C/T genotypu s genem pro HIF1A (1772C>T, rs11549465) (OR = 3,65; p = 0,009) souvisela s nepříznivým průběhem AIHF. U žen s C/T genotypem s genem pro HIF1A (1772C>T, rs11549465) byla zjištěna další progrese AIHF: ejekční frakce levé komory se statisticky významně (p < 0,001) snížila o 11,8 % z 51 (47; 53) na 45 (43; 46) %, její end-systolický průměr se zvětšil o 7,8 % (p < 0,001) a end-diastolický průměr o 5,2 % (p < 0,001). Závěr: Polymorfismus C/T hypoxií indukovatelného faktoru pro gen 1alfa (1772C>T, rs11549465) u žen bez předchozího KVO byl spojen s nepříznivým průběhem AIHF za období 24 měsíců
Objective: The objective of the study was to evaluate the role of hypoxia-inducible factor 1alpha (HIF1A) gene (1772C>T, rs11549465) in the course of anthracycline-induced heart failure (AIHF) in women without previous cardiovascular diseases (CVD) during 24 months. Methods: A total of 114 women, median age of 47.0 (44.0; 52.0) years with AIHF of NYHA class I-III who received doxorubicin for breast cancer were enrolled. Evaluation of gene polymorphisms was carried out by polymerase chain reaction at baseline. Results: After 24 months of follow-up all patients had breast cancer remission and were divided into 2 groups: group 1 comprised women with adverse course of AIHF (n = 36), group 2 comprised those without it (n = 75). The presence of C/T genotype of HIF1A gene (1772C>T, rs11549465) (OR = 3.65; p = 0.009) was related with adverse course of AIHF. Women with C/T genotype of HIF1A gene (1772C>T, rs11549465) had further progression of AIHF: left ventricle ejection fraction significantly (p <0.001) decreased by 11.8% from 51 (47; 53) to 45 (43; 46)%, end-systolic dimension increased by 7.8% (p <0.001), and end-diastolic dimension by 5.2% (p <0.001). Conclusion: Polymorphism of C/T of hypoxia-inducible factor 1alpha gene (1772C>T, rs11549465) in women without previous CVD was associated with adverse course of AIHF during 24 months.
- MeSH
- antracykliny MeSH
- dospělí MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa * genetika MeSH
- genotyp MeSH
- lidé středního věku MeSH
- lidé MeSH
- nádory prsu farmakoterapie komplikace MeSH
- polymorfismus genetický MeSH
- srdeční selhání * chemicky indukované farmakoterapie genetika MeSH
- Check Tag
- dospělí MeSH
- lidé středního věku MeSH
- lidé MeSH
- Publikační typ
- hodnotící studie MeSH
BACKGROUND: An altered sympathetic nervous system is implicated in many cardiac pathologies, ranging from sudden infant death syndrome to common diseases of adulthood such as hypertension, myocardial ischemia, cardiac arrhythmias, myocardial infarction, and heart failure. Although the mechanisms responsible for disruption of this well-organized system are the subject of intensive investigations, the exact processes controlling the cardiac sympathetic nervous system are still not fully understood. A conditional knockout of the Hif1a gene was reported to affect the development of sympathetic ganglia and sympathetic innervation of the heart. This study characterized how the combination of HIF-1α deficiency and streptozotocin (STZ)-induced diabetes affects the cardiac sympathetic nervous system and heart function of adult animals. METHODS: Molecular characteristics of Hif1a deficient sympathetic neurons were identified by RNA sequencing. Diabetes was induced in Hif1a knockout and control mice by low doses of STZ treatment. Heart function was assessed by echocardiography. Mechanisms involved in adverse structural remodeling of the myocardium, i.e. advanced glycation end products, fibrosis, cell death, and inflammation, was assessed by immunohistological analyses. RESULTS: We demonstrated that the deletion of Hif1a alters the transcriptome of sympathetic neurons, and that diabetic mice with the Hif1a-deficient sympathetic system have significant systolic dysfunction, worsened cardiac sympathetic innervation, and structural remodeling of the myocardium. CONCLUSIONS: We provide evidence that the combination of diabetes and the Hif1a deficient sympathetic nervous system results in compromised cardiac performance and accelerated adverse myocardial remodeling, associated with the progression of diabetic cardiomyopathy.
- MeSH
- diabetická kardiomyopatie * genetika MeSH
- experimentální diabetes mellitus * chemicky indukované genetika komplikace MeSH
- myokard metabolismus MeSH
- myši MeSH
- srdce inervace MeSH
- sympatický nervový systém metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
BACKGROUND: Diabetic cardiomyopathy is associated with a number of functional and structural pathological changes such as left ventricular dysfunction, cardiac remodeling, and apoptosis. The primary cause of diabetic cardiomyopathy is hyperglycemia, the metabolic hallmark of diabetes. Recent studies have shown that a diabetic environment suppresses hypoxia-inducible factor (HIF)-1α protein stability and function. The aim of this study was to analyze the functional role of HIF-1α in the development of diabetic cardiomyopathy. We have hypothesized that the partial deficiency of HIF-1α may compromise cardiac responses under diabetic conditions and increase susceptibility to diabetic cardiomyopathy. METHODS: Diabetes was induced by streptozotocin in wild type (Wt) and heterozygous Hif1a knock-out (Hif1a+/-) mice. Echocardiographic evaluations of left ventricular functional parameters, expression analyses by qPCR and Western blot, and cardiac histopathology assessments were performed in age-matched groups, diabetic, and non-diabetic Wt and Hif1a+/- mice. RESULTS: Five weeks after diabetes was established, a significant decrease in left ventricle fractional shortening was detected in diabetic Hif1a+/- but not in diabetic Wt mice. The combination effects of the partial deficiency of Hif1a and diabetes affected the gene expression profile of the heart, including reduced vascular endothelial growth factor A (Vegfa) expression. Adverse cardiac remodeling in the diabetic Hif1a+/- heart was shown by molecular changes in the expression of structural molecules and components of the extracellular matrix. CONCLUSIONS: We have shown a correlation between heterozygosity for Hif1α and adverse functional, molecular, and cellular changes associated with diabetic cardiomyopathy. Our results provide evidence that HIF-1α regulates early cardiac responses to diabetes, and that HIF-1α deregulation may influence the increased risk for diabetic cardiomyopathy.
- Publikační typ
- časopisecké články MeSH
Although physiological responses to chronic hypoxia, including pulmonary hypertension and right ventricular hypertrophy, have been well described, the molecular mechanisms involved in cardiopulmonary adaptations are still not fully understood. We hypothesize that adaptive responses to chronic hypoxia are the result of altered transcriptional regulations in the right and left ventricles. Here we report results from the gene expression profiling of adaptive responses in a chronically hypoxic heart. Of 11 analyzed candidate genes, the expression of seven and four genes, respectively, was significantly altered in the right ventricle of hypoxic male and female mice. In the transcriptional profile of the left ventricle, we identified a single expression change in hypoxic males (Vegfa gene). To directly test the role of HIF1, we analyzed the expression profile in Hif1a partially deficient mice exposed to moderate hypoxia. Our data showed that Hif1a partial deficiency significantly altered transcriptional profiles of analyzed genes in hypoxic hearts. The expression changes were only detected in two genes in the right ventricle of Hif1a(+/-) males and in one gene in the right ventricle of Hif1a(+/-) females. First, our results suggest that hypoxia mainly affects adaptive expression profiles in the right ventricle and that each ventricle can respond independently. Second, our findings indicate that HIF1a plays an important role in adaptive cardiopulmonary responses and the dysfunction of HIF1 pathways considerably affects transcriptional regulation in the heart. Third, our data reveal significant differences between males and females in cardiac adaptive responses to hypoxia and indicate the necessity of optimizing diagnostic and therapeutic procedures in clinical practice, with respect to sex.
- MeSH
- časové faktory MeSH
- chronická nemoc MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa nedostatek genetika metabolismus MeSH
- fyziologická adaptace MeSH
- genetická transkripce MeSH
- hematokrit MeSH
- hypoxie genetika metabolismus patofyziologie MeSH
- kardiomegalie genetika metabolismus patofyziologie MeSH
- krevní tlak MeSH
- messenger RNA metabolismus MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední C57BL MeSH
- myši knockoutované MeSH
- myši MeSH
- plicní hypertenze genetika metabolismus patofyziologie MeSH
- polymerázová řetězová reakce s reverzní transkripcí MeSH
- regulace genové exprese MeSH
- sexuální faktory MeSH
- srdce - funkce komor genetika MeSH
- srdeční komory metabolismus patofyziologie MeSH
- stanovení celkové genové exprese metody MeSH
- tělesná hmotnost MeSH
- vaskulární endoteliální růstový faktor A genetika MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
Cardiovascular malformations are the most common manifestation of diabetic embryopathy. The molecular mechanisms underlying the teratogenic effect of maternal diabetes have not been fully elucidated. Using genome-wide expression profiling, we previously demonstrated that exposure to maternal diabetes resulted in dysregulation of the hypoxia-inducible factor 1 (HIF-1) pathway in the developing embryo. We thus considered a possible link between HIF-1-regulated pathways and the development of congenital malformations. HIF-1α heterozygous-null (Hif1a(+/-)) and wild type (Wt) littermate embryos were exposed to the intrauterine environment of a diabetic mother to analyze the frequency and morphology of congenital defects, and assess gene expression changes in Wt and Hif1a(+/-) embryos. We observed a decreased number of embryos per litter and an increased incidence of heart malformations, including atrioventricular septal defects and reduced myocardial mass, in diabetes-exposed Hif1a(+/-) embryos as compared to Wt embryos. We also detected significant differences in the expression of key cardiac transcription factors, including Nkx2.5, Tbx5, and Mef2C, in diabetes-exposed Hif1a(+/-) embryonic hearts compared to Wt littermates. Thus, partial global HIF-1α deficiency alters gene expression in the developing heart and increases susceptibility to congenital defects in a mouse model of diabetic pregnancy.
- MeSH
- celogenomová asociační studie MeSH
- embryo savčí embryologie patologie MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa * MeSH
- genetická predispozice k nemoci MeSH
- mutantní kmeny myší MeSH
- myši MeSH
- srdce embryologie MeSH
- svalové proteiny biosyntéza genetika MeSH
- těhotenství při diabetu genetika metabolismus patologie MeSH
- těhotenství MeSH
- vrozené srdeční vady embryologie genetika patologie MeSH
- vývojová regulace genové exprese * MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- těhotenství MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Hypoxia, a common feature of the tumor microenvironment in various types of cancers, weakens cytotoxic T cell function and causes recruitment of regulatory T cells, thereby reducing tumoral immunogenicity. Studies have demonstrated that hypoxia and hypoxia-inducible factors (HIFs) 1 and 2 alpha (HIF1A and HIF2A) are involved in tumor immune escape. Under hypoxia, activation of HIF1A induces a series of signaling events, including through programmed death receptor-1/programmed death ligand-1. Moreover, hypoxia triggers shedding of complex class I chain-associated molecules through nitric oxide signaling impairment to disrupt immune surveillance by natural killer cells. The HIF-1-galactose-3-O-sulfotransferase 1-sulfatide axis enhances tumor immune escape via increased tumor cell-platelet binding. HIF2A upregulates stem cell factor expression to recruit tumor-infiltrating mast cells and increase levels of cytokines interleukin-10 and transforming growth factor-β, resulting in an immunosuppressive tumor microenvironment. Additionally, HIF1A upregulates expression of tumor-associated long noncoding RNAs and suppresses immune cell function, enabling tumor immune escape. Overall, elucidating the underlying mechanisms by which HIFs promote evasion of tumor immune surveillance will allow for targeting HIF in tumor treatment. This review discusses the current knowledge of how hypoxia and HIFs facilitate tumor immune escape, with evidence to date implicating HIF1A as a molecular target in such immune escape. This review provides further insight into the mechanism of tumor immune escape, and strategies for tumor immunotherapy are suggested.
Pressure ulcers (PUs), also known as pressure injuries, are chronic wounds that represent potential lifelong complications. Pressure ulcers of a deep category (III and IV) are often indicated for surgical treatment - debridement and surgical reconstruction. Sharp surgical debridement is widely used in the debridement of PUs; however, the Versajet® hydrosurgery system is becoming an increasingly popular tool for tangential excision in surgery due to its numerous advantages. This work focused on the expression of selected genes, especially those associated with oxidative stress, in PUs debrided by two approaches - sharp surgical debridement and debridement using Versajet® hydrosurgery system. Expression of following genes was evaluated: NFE2L2, ACTA2, NFKB1, VEGFA, MKI67, HMOX1, HMOX2, HIF1A, and SOD2. ACTB and PSMB were used as housekeeping genes. So far, five patients have been enrolled in the study. Preliminary results suggest no significant difference in gene expression with different pressure ulcer treatment approaches except NFE2L2, despite the macroscopic differences. However, the results revealed correlations between the expression of some genes, namely HIF1A and SOD2, VEGFA and SOD2 and VEGFA and HIF1A. These results may indicate a connection between hypoxia, oxidative stress, pressure ulcer healing processes and angiogenesis.
- MeSH
- debridement metody MeSH
- dekubity * genetika chirurgie MeSH
- exprese genu MeSH
- hnisání MeSH
- hojení ran * genetika MeSH
- lidé MeSH
- pilotní projekty MeSH
- výsledek terapie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
AIM: The transcriptional factor HIF-1α is recognized for its contribution to cardioprotection against acute ischemia/reperfusion injury. Adaptation to chronic hypoxia (CH) is known to stabilize HIF-1α and increase myocardial ischemic tolerance. However, the precise role of HIF-1α in mediating the protective effect remains incompletely understood. METHODS: Male wild-type (WT) mice and mice with partial Hif1a deficiency (hif1a +/-) were exposed to CH for 4 weeks, while their respective controls were kept under normoxic conditions. Subsequently, their isolated perfused hearts were subjected to ischemia/reperfusion to determine infarct size, while RNA-sequencing of isolated cardiomyocytes was performed. Mitochondrial respiration was measured to evaluate mitochondrial function, and western blots were performed to assess mitophagy. RESULTS: We demonstrated enhanced ischemic tolerance in WT mice induced by adaptation to CH compared with their normoxic controls and chronically hypoxic hif1a +/- mice. Through cardiomyocyte bulk mRNA sequencing analysis, we unveiled significant reprogramming of cardiomyocytes induced by CH emphasizing mitochondrial processes. CH reduced mitochondrial content and respiration and altered mitochondrial ultrastructure. Notably, the reduced mitochondrial content correlated with enhanced autophagosome formation exclusively in chronically hypoxic WT mice, supported by an increase in the LC3-II/LC3-I ratio, expression of PINK1, and degradation of SQSTM1/p62. Furthermore, pretreatment with the mitochondrial division inhibitor (mdivi-1) abolished the infarct size-limiting effect of CH in WT mice, highlighting the key role of mitophagy in CH-induced cardioprotection. CONCLUSION: These findings provide new insights into the contribution of HIF-1α to cardiomyocyte survival during acute ischemia/reperfusion injury by activating the selective autophagy pathway.
- MeSH
- faktor 1 indukovatelný hypoxií - podjednotka alfa * metabolismus genetika MeSH
- fyziologická adaptace fyziologie MeSH
- hypoxie * metabolismus MeSH
- infarkt myokardu * metabolismus patologie genetika MeSH
- kardiomyocyty metabolismus patologie MeSH
- mitofagie * fyziologie MeSH
- myši inbrední C57BL MeSH
- myši MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH