Meadow Dotaz Zobrazit nápovědu
Phytohormones, similar to soil enzymes, are synthesized and secreted into the soil environment by fungi and microorganisms. Phytohormones are involved in regulating microbial community activity in the rhizosphere. This paper examines how auxins, cytokinins, ethephon and chlorocholine chloride affect the activity of native soil proteases in the organo-mineral horizon of an alpine meadow. In the meadow habitat, native soil proteases were inhibited by auxins whereas the effect of cytokinins on these enzymes was not statistically significant. A similar inhibitory effect on the activity of proteases was shown for ethephon and chlorocholine chloride, both of which also inhibited the activity of native soil proteases in the alpine meadow soil. Overall, the inhibitory effect of phytohormones on the activity of native protease activity may affect plant nutrition by retarding the nitrogen cycle in the soil. This work contributes to our understanding of the influence of substances produced by the rhizosphere that can actively participate in the activity of soil microorganisms and consequently influence the soil nitrogen cycle.
- MeSH
- chlormekvát farmakologie MeSH
- cytokininy farmakologie MeSH
- dusík chemie MeSH
- kyseliny indoloctové farmakologie MeSH
- organofosforové sloučeniny farmakologie MeSH
- pastviny MeSH
- proteasy metabolismus MeSH
- půdní mikrobiologie MeSH
- regulátory růstu rostlin farmakologie MeSH
- Rhizobiaceae enzymologie MeSH
- rostlinné proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
59 s. : fot., tab., grafy ; 30 cm
- Konspekt
- Psychiatrie
- NLK Obory
- psychiatrie
- psychologie, klinická psychologie
One of the most fundamental, although controversial, questions related to the evolution of plant mating systems is the distribution of outcrossing rates. Self-compatibility, and especially autonomous self-pollination, can become particularly beneficial in anthropogenically degraded habitats with impoverished pollinator assemblages and increased pollen limitation. In a hand-pollination experiment with 46 meadow plants from the Železné hory Mts., Czech Republic, we evaluated the species' ability to adopt different mating systems. For a subset of the species, we also tested seed germination for inbreeding depression. Subsequently, we analysed relationships between the species' mating systems and 12 floral and life-history traits. We found a relatively discrete distribution of the studied species into four groups. Fully and partially self-incompatible species formed the largest group, followed by self-compatible non-selfers and mixed mating species. The germination experiment showed an absence of inbreeding depression in 19 out of 22 examined species. Nectar sugar per flower, nectar sugar per shoot and dichogamy were significant associated with the mating system. Spontaneous selfing ability and self-incompatibility in species of the meadow communities had a discrete distribution, conforming to the general distribution of mating and breeding systems in angiosperms. The low frequency of spontaneous selfers and the lack of inbreeding depression at germination suggest the existence of a selection against selfing at the later ontogenetic stages. Some floral traits, such as the level of dichogamy and amount of nectar reward, may strongly impact the balance between selfing and outcrossing rates in the self-compatible species and thus shape the evolution of mating systems.
- MeSH
- fyziologie rostlin * MeSH
- květy MeSH
- opylení * MeSH
- pastviny * MeSH
- rozmnožování fyziologie MeSH
- Publikační typ
- časopisecké články MeSH
2. Aufl. 282 s. : il.
The analysis of large genomes is hampered by a high proportion of repetitive DNA, which makes the assembly of short sequence reads difficult. This is also the case in meadow fescue (Festuca pratensis), which is known for good abiotic stress resistance and has been used in intergeneric hybridization with ryegrasses (Lolium spp.) to produce Festulolium cultivars. In this work, we describe a new approach to analyze the large genome of meadow fescue, which involves the reduction of sample complexity without compromising information content. This is achieved by dissecting the genome to smaller parts: individual chromosomes and groups of chromosomes. As the first step, we flow sorted chromosome 4F and sequenced it by Illumina with approximately 50× coverage. This provided, to our knowledge, the first insight into the composition of the fescue genome, enabled the construction of the virtual gene order of the chromosome, and facilitated detailed comparative analysis with the sequenced genomes of rice (Oryza sativa), Brachypodium distachyon, sorghum (Sorghum bicolor), and barley (Hordeum vulgare). Using GenomeZipper, we were able to confirm the collinearity of chromosome 4F with barley chromosome 4H and the long arm of chromosome 5H. Several new tandem repeats were identified and physically mapped using fluorescence in situ hybridization. They were found as robust cytogenetic markers for karyotyping of meadow fescue and ryegrass species and their hybrids. The ability to purify chromosome 4F opens the way for more efficient analysis of genomic loci on this chromosome underlying important traits, including freezing tolerance. Our results confirm that next-generation sequencing of flow-sorted chromosomes enables an overview of chromosome structure and evolution at a resolution never achieved before.
- MeSH
- chromozomy rostlin genetika MeSH
- Festuca genetika MeSH
- genom rostlinný genetika MeSH
- genomika metody MeSH
- hybridizace in situ fluorescenční MeSH
- ječmen (rod) genetika MeSH
- karyotypizace metody MeSH
- mapování chromozomů MeSH
- molekulární sekvence - údaje MeSH
- pořadí genů MeSH
- reprodukovatelnost výsledků MeSH
- rýže (rod) MeSH
- sekvenční analýza DNA metody MeSH
- Sorghum genetika MeSH
- Southernův blotting MeSH
- syntenie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
We studied the effect of cessation of management on carbohydrate reserves of plants in meadows with different environmental characteristics and plant composition. We recorded storage carbohydrates and seasonal changes for 40 plant species. We asked whether there are differences in responses of carbohydrate reserves in forbs versus graminoids and in plants storing starch versus plants storing osmotically active carbohydrates. We analysed belowground organs before the meadows were mown and at the end of the vegetation season in mown versus recently abandoned plots. Whereas starch and fructans were widely distributed, raffinose family oligosaccharides were the main carbohydrate reserves of the Lamiaceae and Plantago lanceolata. Properties of carbohydrate reserves differed between forbs and graminoids but no difference was found between plants storing starch versus osmotically active carbohydrates. Graminoids had lower carbohydrate concentrations than forbs. We observed a positive effect of mowing on carbohydrate concentrations of graminoids in the dry, calcium-rich meadow and higher seasonal fluctuations of these values in the acid, wet meadow, suggesting that local factors and/or the species pool affect carbohydrate reserves. Despite local conditions, graminoids represent a distinct functional group in meadows from the point of view of their storage economy. We suggest that as well as growth, storage processes should also be considered for understanding the functioning of meadow plant communities.
- MeSH
- ekosystém MeSH
- hluchavkovité chemie MeSH
- Plantago chemie MeSH
- půda analýza MeSH
- roční období MeSH
- sacharidy analýza MeSH
- škrob analýza MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
Background and Aims: Below-ground carbohydrate storage is considered an adaptation of plants aimed at regeneration after disturbance. A theoretical model by Iwasa and Kubo was empirically tested which predicted (1) that storage of carbohydrates scales allometrically with leaf biomass and (2) when the disturbance regime is relaxed, the ratio of storage to leaf biomass increases, as carbohydrates are not depleted by disturbance. Methods: These ideas were tested on nine herbaceous species from a temperate meadow and the disturbance regime was manipulated to create recently abandoned and mown plots. Just before mowing in June and at the end of the season in October, plants with below-ground organs were sampled. The material was used to assess the pool of total non-structural carbohydrates and leaf biomass. Key Results: In half of the cases, a mostly isometric relationship between below-ground carbohydrate storage and leaf biomass in meadow plants was found. The ratio of below-ground carbohydrate storage to leaf biomass did not change when the disturbance regime was less intensive than that for which the plants were adapted. Conclusions: These findings (isometric scaling relationship between below-ground carbohydrate storage and leaf biomass; no effect of a relaxed disturbance regime) imply that storage in herbs is probably governed by factors other than just the disturbance regime applied once in a growing season.
- MeSH
- biomasa * MeSH
- ekosystém * MeSH
- listy rostlin fyziologie MeSH
- Magnoliopsida fyziologie MeSH
- metabolismus sacharidů * MeSH
- pastviny MeSH
- Publikační typ
- časopisecké články MeSH
- Geografické názvy
- Česká republika MeSH
Drugs are potentially dangerous environmental contaminants, as they are designed to have biological effects at low concentrations. Monepantel (MOP), an amino-acetonitrile derivative, is frequently used veterinary anthelmintics, but information about MOP environmental circulation and impact is almost non-existent. We studied the phytotoxicity, uptake and biotransformation of MOP in two fodder plants, Plantago lanceolata and Medicago sativa. The seeds and whole plant regenerants were cultivated with MOP. The plant roots and the leaves were collected after 1, 2, 3, 4, 5 and 6 weeks of cultivation. The lengths of roots and proline concentrations in the roots and leaves were measured to evaluate MOP phytotoxicity. The UHPLC-MS/MS technique with a Q-TOF mass analyser was used for the identification and semi-quantification of MOP and its metabolites. Our results showed no phytotoxicity of MOP. However, both plants were able to uptake, transport and metabolize MOP. Comparing both plants, the uptake of MOP was much more extensive in Medicago sativa (almost 10-times) than in Plantago lanceolate. Moreover, 9 various metabolites of MOP were detected in Medicago sativa, while only 7 MOP metabolites were found in Plantago lanceolata. Based on metabolites structures, scheme of the metabolic pathways of MOP in both plants was proposed. MOP and its main metabolite (MOP sulfone), both anthelmintically active, were present not only in roots but also in leaves that can be consumed by animals. This indicates the potential for undesirable circulation of MOP in the environment, which could lead to many pharmacological and toxicological consequences.
- MeSH
- aminoacetonitrily analogy a deriváty farmakokinetika toxicita MeSH
- anthelmintika toxicita MeSH
- biologický transport MeSH
- biotransformace MeSH
- dobytek MeSH
- krmivo pro zvířata toxicita MeSH
- Medicago sativa metabolismus MeSH
- metabolické sítě a dráhy MeSH
- pastviny * MeSH
- Plantago metabolismus MeSH
- sulfony MeSH
- tandemová hmotnostní spektrometrie MeSH
- znečištění životního prostředí * MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
Storage of carbohydrates in organs protected from disturbance is an important adaptation of plants in disturbed habitats. We carried out a field experiment involving 31 herbaceous plant species in two cultural meadows to find out whether roots or belowground stem-derived organs (stem bases, stem tubers and rhizomes) are the main storage organs, to study how reserves accumulate in individual organs in the long term (growing season) and to ascertain whether meadow abandonment affects the distribution of carbohydrate reserves in plants. We also conducted a 22-day pot experiment with four meadow plant species to determine how removal of roots and aboveground parts affects the use of carbohydrates stored in roots and stem-derived organs in the short term. From the long-term perspective of the field experiment, mowing had a positive effect on the concentration of carbohydrate reserves. From the short-term perspective of the pot experiment, however, the effect on concentration and pools of carbohydrates was negative. In the field experiment, carbohydrate concentrations before winter were generally higher than in mid-season, and more often higher in roots than in stem-derived organs. Roots and stem-derived organs of plants in the pot experiment were depleted similarly after both types of disturbance. Our results indicate a need for including both types of belowground plant organs in future studies of the carbon economy of plants from disturbed habitats.
- MeSH
- ekosystém * MeSH
- kořeny rostlin chemie MeSH
- lipnicovité MeSH
- roční období MeSH
- rostliny chemie MeSH
- sacharidy chemie MeSH
- stonky rostlin chemie MeSH
- uhlík MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH