Pollen development
Dotaz
Zobrazit nápovědu
Pollen germination as a crucial process in plant development strongly depends on the accessibility of carbon as energy source. Carbohydrates, however, function not only as a primary energy source, but also as important signaling components. In a comprehensive study, we analyzed various aspects of the impact of 32 different sugars on in vitro germination of Arabidopsis pollen comprising about 150 variations of individual sugars and combinations. Twenty-six structurally different mono-, di- and oligosaccharides, and sugar analogs were initially tested for their ability to support pollen germination. Whereas several di- and oligosaccharides supported pollen germination, hexoses such as glucose, fructose and mannose did not support and even considerably inhibited pollen germination when added to germination-supporting medium. Complementary experiments using glucose analogs with varying functional features, the hexokinase inhibitor mannoheptulose and the glucose-insensitive hexokinase-deficient Arabidopsis mutant gin2-1 suggested that mannose- and glucose-mediated inhibition of sucrose-supported pollen germination depends partially on hexokinase signaling. The results suggest that, in addition to their role as energy source, sugars act as signaling molecules differentially regulating the complex process of pollen germination depending on their structural properties. Thus, a sugar-dependent multilayer regulation of Arabidopsis pollen germination is supported, which makes this approach a valuable experimental system for future studies addressing sugar sensing and signaling.
- MeSH
- Arabidopsis účinky léků fyziologie MeSH
- hexosy metabolismus farmakologie MeSH
- klíčení účinky léků fyziologie MeSH
- mannosa metabolismus farmakologie MeSH
- metabolismus sacharidů * MeSH
- oligosacharidy chemie metabolismus farmakologie MeSH
- pyl metabolismus fyziologie MeSH
- sacharidy MeSH
- sacharosa metabolismus farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
Bylo provedeno retrospektivní hodnocení 795 pacientů s polinózou, kteří byli vyšetření na alergologické ambulanci v letech 2001-2004. Sledovali jsme výskyt příznaků souvisejících s pylovou alergií i projevy jiné alergie, senzibilizaci pylovými a ostatními alergeny a alergologickou rodinnou anamnétou. Pokusili jsme se vytypovat, které z ukazatelů mohou predikovat vznik bronchiálního astmatu u polinotiků.
Results of examination in group of 795 patients with pollen allergy were evaluated. Data followed were: symptoms of allergy due to pollen and other allergens hypersansitivity, sensitisation to main relevant pollen and non-pollen allergens and presence of allergy in familar history of patients. Some relatios between different markers, which could be predictive for developing of bornchial asthma, were found.
Reproduction success in angiosperm plants depends on robust pollen tube growth through the female pistil tissues to ensure successful fertilization. Accordingly, there is an apparent evolutionary trend to accumulate significant reserves during pollen maturation, including a population of stored mRNAs, that are utilized later for a massive translation of various proteins in growing pollen tubes. Here, we performed a thorough transcriptomic and proteomic analysis of stored and translated transcripts in three subcellular compartments of tobacco (Nicotiana tabacum), long-term storage EDTA/puromycin-resistant particles, translating polysomes, and free ribonuclear particles, throughout tobacco pollen development and in in vitro-growing pollen tubes. We demonstrated that the composition of the aforementioned complexes is not rigid and that numerous transcripts were redistributed among these complexes during pollen development, which may represent an important mechanism of translational regulation. Therefore, we defined the pollen sequestrome as a distinct and highly dynamic compartment for the storage of stable, translationally repressed transcripts and demonstrated its dynamics. We propose that EDTA/puromycin-resistant particle complexes represent aggregated nontranslating monosomes as the primary mediators of messenger RNA sequestration. Such organization is extremely useful in fast tip-growing pollen tubes, where rapid and orchestrated protein synthesis must take place in specific regions.
- MeSH
- polyribozomy genetika metabolismus MeSH
- proteom genetika metabolismus MeSH
- proteomika metody MeSH
- pyl genetika růst a vývoj metabolismus MeSH
- pylová láčka genetika růst a vývoj metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- ribonukleoproteiny genetika metabolismus MeSH
- ribozomy genetika metabolismus MeSH
- rostlinné proteiny genetika metabolismus MeSH
- stanovení celkové genové exprese metody MeSH
- tabák genetika růst a vývoj metabolismus MeSH
- vývojová regulace genové exprese MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Zm-p60.1 is maize cDNA coding cytokinin-glucoside specific beta-glucosidase. Indigogenic method was used for histochemical localization of Zm-p60.1 beta-glucosidase activity in various developmental stages of transgenic tobacco anthers. Expression of Zm-p60.1 cDNA in T7 tobacco plants is controlled by the CaMV 35S promoter. Another type of tobacco transformant expresses Zm-p60.1 under the control of LAT 52 promoter. Histochemical detection has proved different patterns of beta-glucosidase activity during tobacco pollen development in these two types of transformants. Zm-p60.1 beta-glucosidase activity had not direct influence on pollen germinability.
- MeSH
- beta-glukosidasa genetika MeSH
- DNA primery genetika MeSH
- exprese genu MeSH
- geneticky modifikované rostliny MeSH
- jedovaté rostliny MeSH
- kukuřice setá enzymologie genetika růst a vývoj MeSH
- messenger RNA genetika metabolismus MeSH
- pyl enzymologie genetika růst a vývoj MeSH
- RNA rostlin genetika metabolismus MeSH
- sekvence nukleotidů MeSH
- tabák MeSH
- transformace genetická MeSH
Tobacco (Nicotiana tabacum) pollen is a well-suited model for studying many fundamental biological processes owing to its well-defined and distinct development stages. It is also one of the major agents involved in the transmission of infectious viroids, which is the primary mechanism of viroid pathogenicity in plants. However, some viroids are non-transmissible and may be possibly degraded or eliminated during the gradual process of pollen development maturation. The molecular details behind the response of developing pollen against the apple fruit crinkle viroid (AFCVd) infection and viroid eradication is largely unknown. In this study, we performed an integrative analysis of the transcriptome and proteome profiles to disentangle the molecular cascade of events governing the three pollen development stages: early bicellular pollen (stage 3, S3), late bicellular pollen (stage 5, S5), and 6 h-pollen tube (PT6). The integrated analysis delivered the molecular portraits of the developing pollen against AFCVd infection, including mechanistic insights into the viroid eradication during the last steps of pollen development. The isobaric tags for label-free relative quantification (iTRAQ) with digital gene expression (DGE) experiments led us to reliably identify subsets of 5321, 5286, and 6923 proteins and 64,033, 60,597, and 46,640 expressed genes in S3, S5, and PT6, respectively. In these subsets, 2234, 2108 proteins and 9207 and 14,065 mRNAs were differentially expressed in pairwise comparisons of three stages S5 vs. S3 and PT6 vs. S5 of control pollen in tobacco. Correlation analysis between the abundance of differentially expressed mRNAs (DEGs) and differentially expressed proteins (DEPs) in pairwise comparisons of three stages of pollen revealed numerous discordant changes in mRNA/protein pairs. Only a modest correlation was observed, indicative of divergent transcription, and its regulation and importance of post-transcriptional events in the determination of the fate of early and late pollen development in tobacco. The functional and enrichment analysis of correlated DEGs/DEPs revealed the activation in pathways involved in carbohydrate metabolism, amino acid metabolism, lipid metabolism, and cofactor as well as vitamin metabolism, which points to the importance of these metabolic pathways in pollen development. Furthermore, the detailed picture of AFCVd-infected correlated DEGs/DEPs was obtained in pairwise comparisons of three stages of infected pollen. The AFCVd infection caused the modulation of several genes involved in protein degradation, nuclear transport, phytohormone signaling, defense response, and phosphorylation. Intriguingly, we also identified several factors including, DNA-dependent RNA-polymerase, ribosomal protein, Argonaute (AGO) proteins, nucleotide binding proteins, and RNA exonucleases, which may plausibly involve in viroid stabilization and eradication during the last steps of pollen development. The present study provides essential insights into the transcriptional and translational dynamics of tobacco pollen, which further strengthens our understanding of plant-viroid interactions and support for future mechanistic studies directed at delineating the functional role of candidate factors involved in viroid elimination.
Some viroids-single-stranded, non-coding, circular RNA parasites of plants-are not transmissible through pollen to seeds and to next generation. We analyzed the cause for the elimination of apple fruit crinkle viroid (AFCVd) and citrus bark cracking viroid (CBCVd) from male gametophyte cells of Nicotiana tabacum by RNA deep sequencing and molecular methods using infected and transformed tobacco pollen tissues at different developmental stages. AFCVd was not transferable from pollen to seeds in reciprocal pollinations, due to a complete viroid eradication during the last steps of pollen development and fertilization. In pollen, the viroid replication pathway proceeds with detectable replication intermediates, but is dramatically depressed in comparison to leaves. Specific and unspecific viroid degradation with some preference for (-) chains occurred in pollen, as detected by analysis of viroid-derived small RNAs, by quantification of viroid levels and by detection of viroid degradation products forming "comets" on Northern blots. The decrease of viroid levels during pollen development correlated with mRNA accumulation of several RNA-degrading factors, such as AGO5 nuclease, DICER-like and TUDOR S-like nuclease. In addition, the functional status of pollen, as a tissue with high ribosome content, could play a role during suppression of AFCVd replication involving transcription factors IIIA and ribosomal protein L5.
Heat shock transcription factors (Hsfs) are involved in multiple aspects of stress response and plant growth. However, their role during male gametophyte development is largely unknown, although the generative phase is the most sensitive and critical period in the plant life cycle. Based on a wide screen of T-DNA mutant lines, we identified the atren1 mutation (restricted to nucleolus1) in early male gametophytic gene At1g77570, which has the closest homology to HSFA5 gene, the member of a heat shock transcription factor (HSF) gene family. The mutation causes multiple defects in male gametophyte development in both structure and function. Because the mutation disrupts an early acting (AtREN1) gene, these pollen phenotype abnormalities appear from bicellular pollen stage to pollen maturation. Moreover, the consequent progamic phase is compromised as well as documented by pollen germination defects and limited transmission via male gametophyte. In addition, atren1/- plants are defective in heat stress (HS) response and produce notably higher proportion of aberrant pollen grains. AtREN1 protein is targeted specifically to the nucleolus that, together with the increased size of the nucleolus in atren1 pollen, suggests that it is likely to be involved in ribosomal RNA biogenesis or other nucleolar functions.
- MeSH
- alely MeSH
- Arabidopsis cytologie růst a vývoj metabolismus MeSH
- buněčné jadérko metabolismus MeSH
- DNA bakterií genetika MeSH
- DNA vazebné proteiny genetika metabolismus MeSH
- exony genetika MeSH
- fenotyp MeSH
- klíčení MeSH
- mutace genetika MeSH
- penetrance MeSH
- proteiny huseníčku genetika metabolismus MeSH
- pyl cytologie genetika růst a vývoj MeSH
- pylová láčka cytologie genetika růst a vývoj MeSH
- reakce na tepelný šok * genetika MeSH
- regulace genové exprese u rostlin MeSH
- segregace chromozomů genetika MeSH
- testy genetické komplementace MeSH
- transport proteinů MeSH
- vývojová regulace genové exprese MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
KEY MESSAGE: Overview of pollen development. Male gametophyte development of angiosperms is a complex process that requires coordinated activity of different cell types and tissues of both gametophytic and sporophytic origin and the appropriate specific gene expression. Pollen ontogeny is also an excellent model for the dissection of cellular networks that control cell growth, polarity, cellular differentiation and cell signaling. This article describes two sequential phases of angiosperm pollen ontogenesis-developmental phase leading to the formation of mature pollen grains, and a functional or progamic phase, beginning with the impact of the grains on the stigma surface and ending at double fertilization. Here we present an overview of important cellular processes in pollen development and explosive pollen tube growth stressing the importance of reserves accumulation and mobilization and also the mutual activation of pollen tube and pistil tissues, pollen tube guidance and the communication between male and female gametophytes. We further describe the recent advances in regulatory mechanisms involved such as posttranscriptional regulation (including mass transcript storage) and posttranslational modifications to modulate protein function, intracellular metabolic signaling, ionic gradients such as Ca(2+) and H(+) ions, cell wall synthesis, protein secretion and intercellular signaling within the reproductive tissues.