SPARQL Dotaz Zobrazit nápovědu
Current biological and chemical research is increasingly dependent on the reusability of previously acquired data, which typically come from various sources. Consequently, there is a growing need for database systems and databases stored in them to be interoperable with each other. One of the possible solutions to address this issue is to use systems based on Semantic Web technologies, namely on the Resource Description Framework (RDF) to express data and on the SPARQL query language to retrieve the data. Many existing biological and chemical databases are stored in the form of a relational database (RDB). Converting a relational database into the RDF form and storing it in a native RDF database system may not be desirable in many cases. It may be necessary to preserve the original database form, and having two versions of the same data may not be convenient. A solution may be to use a system mapping the relational database to the RDF form. Such a system keeps data in their original relational form and translates incoming SPARQL queries to equivalent SQL queries, which are evaluated by a relational-database system. This review compares different RDB-to-RDF mapping systems with a primary focus on those that can be used free of charge. In addition, it compares different approaches to expressing RDB-to-RDF mappings. The review shows that these systems represent a viable method providing sufficient performance. Their real-life performance is demonstrated on data and queries coming from the neXtProt project.
- Publikační typ
- časopisecké články MeSH
- přehledy MeSH
OBJECTIVES: This study aims to describe the data structure and harmonisation process, explore data quality and define characteristics, treatment, and outcomes of patients across six federated antineutrophil cytoplasmic antibody-associated vasculitis (AAV) registries. METHODS: Through creation of the vasculitis-specific Findable, Accessible, Interoperable, Reusable, VASCulitis ontology, we harmonised the registries and enabled semantic interoperability. We assessed data quality across the domains of uniqueness, consistency, completeness and correctness. Aggregated data were retrieved using the semantic query language SPARQL Protocol and Resource Description Framework Query Language (SPARQL) and outcome rates were assessed through random effects meta-analysis. RESULTS: A total of 5282 cases of AAV were identified. Uniqueness and data-type consistency were 100% across all assessed variables. Completeness and correctness varied from 49%-100% to 60%-100%, respectively. There were 2754 (52.1%) cases classified as granulomatosis with polyangiitis (GPA), 1580 (29.9%) as microscopic polyangiitis and 937 (17.7%) as eosinophilic GPA. The pattern of organ involvement included: lung in 3281 (65.1%), ear-nose-throat in 2860 (56.7%) and kidney in 2534 (50.2%). Intravenous cyclophosphamide was used as remission induction therapy in 982 (50.7%), rituximab in 505 (17.7%) and pulsed intravenous glucocorticoid use was highly variable (11%-91%). Overall mortality and incidence rates of end-stage kidney disease were 28.8 (95% CI 19.7 to 42.2) and 24.8 (95% CI 19.7 to 31.1) per 1000 patient-years, respectively. CONCLUSIONS: In the largest reported AAV cohort-study, we federated patient registries using semantic web technologies and highlighted concerns about data quality. The comparison of patient characteristics, treatment and outcomes was hampered by heterogeneous recruitment settings.
- MeSH
- ANCA-asociované vaskulitidy * farmakoterapie epidemiologie komplikace MeSH
- granulomatóza s polyangiitidou * farmakoterapie epidemiologie komplikace MeSH
- lidé MeSH
- mikroskopická polyangiitida * farmakoterapie epidemiologie MeSH
- protilátky proti cytoplazmě neutrofilů MeSH
- registrace MeSH
- správnost dat MeSH
- ukládání a vyhledávání informací MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- metaanalýza MeSH