buffer
Dotaz
Zobrazit nápovědu
- MeSH
- acidobazická rovnováha analýza MeSH
- elektrolyty metabolismus MeSH
- pufry MeSH
- sperma MeSH
- Check Tag
- mužské pohlaví MeSH
The values of CMC (critical micellar concentration) for buffered surfactant solutions used in separation methods in analytical chemistry, especially in micellar electrokinetic capillary chromatography, were studied by conductivity, surface tension and viscosity measurements. The study involved solutions of representative anionic (SDS), cationic (CTAB), and non-ionic (TX100, GX080) surfactants. The data measured for aqueous solutions were in good agreement with the published data. The data for buffer solutions confirmed theoretical presumptions ? the CMC values decreased with increasing ionic strength of the solutions. In contrast, viscoelastic properties of the solutions of surfactants were not significantly influenced by the ionic strength or pH of the solutions.
The determination of a suitable buffer environment for a protein of interest is not an easy task. The requirements of advanced techniques, the demands on the biological material and the researcher time needed for buffer optimization, as well as personal inflexibility, lead frequently to the use of sub-optimal buffers. Here, we demonstrate the design of a 48-condition buffer screen that can be used to determine an appropriate environment for downstream studies. By the combination of several techniques (differential scanning fluorimetry, dynamic light scattering, and bio-layer interferometry), we are able to assess the protein stability, homogeneity and binding activity across the screen with less than half a milligram of protein in 1 day. The application of this screen helps to avoid unsuitable conditions, to explain problems observed upon protein analysis and to choose the most suitable buffers for further research. The screen can be routinely used as a primary screen for buffer optimization in labs and facilities.
- MeSH
- dynamický rozptyl světla MeSH
- fluorometrie MeSH
- proteiny MeSH
- pufry MeSH
- stabilita proteinů * MeSH
- Publikační typ
- časopisecké články MeSH
An international standard (ISO: 23317:2014) exists for the in vitro testing of inorganic biomaterials in simulated body fluid (SBF). This standard uses TRIS buffer to maintain neutral pH in SBF, but in our previous paper, we showed that the interaction of a tested glass-ceramic material with TRIS can produce false-positive results. In this study, we evaluated whether the HEPES buffer, which also belongs to the group of Good´s buffers, would be more suitable for SBF. We compared its suitability in two media: SBF with HEPES and demineralized water with HEPES. The tested scaffold (45S5 bioactive glass-based) was exposed to the media under a static-dynamic arrangement (solutions were replaced on a daily basis) for 15 days. Leachate samples were collected daily for the analysis of Ca2+ ions and Si (AAS), (PO4 )3- ions (UV-VIS), and to measure pH. The glass-ceramic scaffold was analyzed by SEM/EDS, XRD, and WD-XRF before and after 0.3, 1, 3, 7, 11, and 15 days of exposure. Our results confirmed the rapid selective dissolution of the glass-ceramic crystalline phase (Combeite) containing Ca2+ ions due to the presence of HEPES, hydroxyapatite supersaturation being reached within 24 h in both solutions. These new results suggest that, like TRIS, HEPES buffer is not suitable for the in vitro testing of highly reactive inorganic biomaterials (glass, glass-ceramics). The ISO standard for such tests requires revision, but HEPES is not a viable alternative to TRIS buffer. © 2016 Wiley Periodicals, Inc. J Biomed Mater Res Part B: Appl Biomater, 106B: 143-152, 2018.
The paper deals with the characterisation of the bioactive phenomena of glass-ceramic scaffold derived from Bioglass® (containing 77 wt.% of crystalline phases Na(2)O·2CaO·3SiO(2) and CaO·SiO(2) and 23 wt.% of residual glass phase) using simulated body fluid (SBF) buffered with tris-(hydroxymethyl) aminomethane (TRIS). A significant effect of the TRIS buffer on glass-ceramic scaffold dissolution in SBF was detected. To better understand the influence of the buffer, the glass-ceramic scaffold was exposed to a series of in vitro tests using different media as follows: (i) a fresh liquid flow of SBF containing tris (hydroxymethyl) aminomethane; (ii) SBF solution without TRIS buffer; (iii) TRIS buffer alone; and (iv) demineralised water. The in vitro tests were provided under static and dynamic arrangements. SBF buffered with TRIS dissolved both the crystalline and residual glass phases of the scaffold and a crystalline form of hydroxyapatite (HAp) developed on the scaffold surface. In contrast, when TRIS buffer was not present in the solutions only the residual glassy phase dissolved and an amorphous calcium phosphate (Ca-P) phase formed on the scaffold surface. It was confirmed that the TRIS buffer primarily dissolved the crystalline phase of the glass-ceramic, doubled the dissolving rate of the scaffold and moreover supported the formation of crystalline HAp. This significant effect of the buffer TRIS on bioactive glass-ceramic scaffold degradation in SBF has not been demonstrated previously and should be considered when analysing the results of SBF immersion bioactivity tests of such systems.