lamin A/C Dotaz Zobrazit nápovědu
Lamins, the nuclear intermediate filaments, are important regulators of nuclear structural integrity as well as nuclear functional processes such as DNA transcription, replication and repair, and epigenetic regulations. A portion of phosphorylated lamin A/C localizes to the nuclear interior in interphase, forming a lamin A/C pool with specific properties and distinct functions. Nucleoplasmic lamin A/C molecular functions are mainly dependent on its binding partners; therefore, revealing new interactions could give us new clues on the lamin A/C mechanism of action. In the present study, we show that lamin A/C interacts with nuclear phosphoinositides (PIPs), and with nuclear myosin I (NM1). Both NM1 and nuclear PIPs have been previously reported as important regulators of gene expression and DNA damage/repair. Furthermore, phosphorylated lamin A/C forms a complex with NM1 in a phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2)-dependent manner in the nuclear interior. Taken together, our study reveals a previously unidentified interaction between phosphorylated lamin A/C, NM1, and PI(4,5)P2 and suggests new possible ways of nucleoplasmic lamin A/C regulation, function, and importance for the formation of functional nuclear microdomains.
- MeSH
- buněčné jádro * metabolismus MeSH
- interfáze MeSH
- intermediární filamenta metabolismus MeSH
- lamin typ A * metabolismus MeSH
- lidé MeSH
- nádorové buněčné linie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In this work, we have studied the structural and functional linkage between lamin A/C, nuclear actin, and organization of chromosome territories (CTs) in mammary carcinoma MCF-7 cells. Selective down-regulation of lamin A/C expression led to disruption of the lamin A/C perinuclear layer and disorganization of lamin-bound emerin complexes at the inner nuclear membrane. The silencing of lamin A/C expression resulted in a decrease in the volume and surface area of chromosome territories, especially in chromosomes with high heterochromatin content. Inhibition of actin polymerization led to relaxation of the structure of chromosome territories, and an increase in the volumes and surface areas of the chromosome territories of human chromosomes 1, 2 and 13. The results show an important role of polymeric actin in the organization of the nuclei and the chromosome territories.
- MeSH
- aktiny metabolismus MeSH
- buněčné jádro metabolismus MeSH
- down regulace MeSH
- financování organizované MeSH
- genom lidský genetika MeSH
- konfokální mikroskopie MeSH
- lamin typ A metabolismus MeSH
- lidé MeSH
- lidské chromozomy metabolismus MeSH
- nádorové buněčné linie MeSH
- tvar buňky MeSH
- Check Tag
- lidé MeSH
Recent studies have shown that histone code dictates the type and structure of chromatin. Bearing in mind the importance of A-type lamins for chromatin arrangement, we studied the effect of trichostatin A (TSA)-induced histone hyperacetylation in lamin A/C-deficient (LMNA-/-) fibroblasts. Lamin A/C deficiency caused condensation of chromosome territories and the nuclear reorganization of centromeric heterochromatin, which was accompanied by the appearance of a chain-like morphology of HP1beta foci. Conversely, histone deacetylase (HDAC) inhibition induced de-condensation of chromosome territories, which compensated the effect of lamin A/C deficiency on chromosome regions. The amount of heterochromatin in the area associated with the nuclear membrane was significantly reduced in LMNA-/- cells when compared with lamin A/C-positive (LMNA+/+) fibroblasts. TSA also decreased the amount of peripheral heterochromatin, similarly as lamin A/C deficiency. In both LMNA+/+ and LMNA-/- cells, physically larger chromosomes were positioned more peripherally as compared with the smaller ones, even after TSA treatment. Our observations indicate that lamin A/C deficiency causes not only reorganization of chromatin and some chromatin-associated domains, but also has an impact on the extent of chromosome condensation. As HDAC inhibition can compensate the lamin A/C-dependent chromatin changes, the interaction between lamins and specifically modified histones may play an important role in higher-order chromatin organization, which influences transcriptional activity.
- MeSH
- acetylace účinky léků MeSH
- buněčné jádro metabolismus MeSH
- centromera metabolismus MeSH
- chromatin metabolismus účinky léků MeSH
- fibroblasty metabolismus MeSH
- financování organizované MeSH
- heterochromatin metabolismus MeSH
- inhibitory enzymů farmakologie MeSH
- inhibitory histondeacetylas MeSH
- jaderné proteiny metabolismus MeSH
- kyseliny hydroxamové farmakologie MeSH
- lamin typ A genetika metabolismus nedostatek MeSH
- lamin typ B metabolismus MeSH
- myši MeSH
- restrukturace chromatinu účinky léků MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
A- and C-type lamins are intermediate filament proteins responsible for the maintenance of nuclear shape and most likely nuclear architecture. Here, we propose that pronounced invaginations of A/C-type lamins into the nuclear interior represent channels for the transport of regulatory molecules to and from nuclear and nucleolar regions. Using fluorescent protein technology and immunofluorescence, we show that A-type lamin channels interact with several nuclear components, including fibrillarin- and UBF-positive regions of nucleoli, foci of heterochromatin protein 1 β, polycomb group bodies, and genomic regions associated with DNA repair. Similar associations were observed between A/C-type lamin channels and nuclear pores, lamin-associated protein LAP2α, and promyelocytic leukemia nuclear bodies. Interestingly, regions with high levels of A/C-type lamins had low levels of B-type lamins, and vice versa. These characteristics were observed in primary and immortalized mouse embryonic fibroblasts as well as human and mouse embryonic stem cell colonies exhibiting stem cell-specific lamin positivity. Our findings indicate that internal channels formed by nuclear lamins likely contribute to normal cellular processes through association with various nuclear and nucleolar structures.
- MeSH
- buněčné jádro genetika MeSH
- chromozomální proteiny, nehistonové ultrastruktura MeSH
- DNA vazebné proteiny metabolismus ultrastruktura MeSH
- lamin typ A ultrastruktura MeSH
- lamin typ B ultrastruktura MeSH
- lidé MeSH
- membránové proteiny metabolismus ultrastruktura MeSH
- myši MeSH
- oprava DNA genetika MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The molecular architecture and assembly mechanism of intermediate filaments have been enigmatic for decades. Among those, lamin filaments are of particular interest due to their universal role in cell nucleus and numerous disease-related mutations. Filament assembly is driven by specific interactions of the elementary dimers, which consist of the central coiled-coil rod domain flanked by non-helical head and tail domains. We aimed to investigate the longitudinal 'head-to-tail' interaction of lamin dimers (the so-called ACN interaction), which is crucial for filament assembly. To this end, we prepared a series of recombinant fragments of human lamin A centred around the N- and C-termini of the rod. The fragments were stabilized by fusions to heterologous capping motifs which provide for a correct formation of parallel, in-register coiled-coil dimers. As a result, we established crystal structures of two N-terminal fragments one of which highlights the propensity of the coiled-coil to open up, and one C-terminal rod fragment. Additional studies highlighted the capacity of such N- and C-terminal fragments to form specific complexes in solution, which were further characterized using chemical cross-linking. These data yielded a molecular model of the ACN complex which features a 6.5 nm overlap of the rod ends.
- MeSH
- hmotnostní spektrometrie MeSH
- krystalografie rentgenová MeSH
- lamin typ A chemie MeSH
- lidé MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The organization of the nuclear periphery is crucial for many nuclear functions. Nuclear lamins form dense network at the nuclear periphery and play a substantial role in chromatin organization, transcription regulation and in organization of nuclear pore complexes (NPCs). Here, we show that TPR, the protein located preferentially within the nuclear baskets of NPCs, associates with lamin B1. The depletion of TPR affects the organization of lamin B1 but not lamin A/C within the nuclear lamina as shown by stimulated emission depletion microscopy. Finally, reduction of TPR affects the distribution of NPCs within the nuclear envelope and the effect can be reversed by simultaneous knock-down of lamin A/C or the overexpression of lamin B1. Our work suggests a novel role for the TPR at the nuclear periphery: the TPR contributes to the organization of the nuclear lamina and in cooperation with lamins guards the interphase assembly of nuclear pore complexes.
- MeSH
- HeLa buňky MeSH
- jaderná lamina metabolismus ultrastruktura MeSH
- jaderný obal metabolismus ultrastruktura MeSH
- komplex proteinů jaderného póru antagonisté a inhibitory genetika metabolismus MeSH
- lamin typ A antagonisté a inhibitory genetika metabolismus MeSH
- lamin typ B genetika metabolismus MeSH
- lidé MeSH
- malá interferující RNA genetika metabolismus MeSH
- molekulární zobrazování MeSH
- protoonkogenní proteiny antagonisté a inhibitory genetika metabolismus MeSH
- regulace genové exprese MeSH
- signální transdukce MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
In mammals, RNA interference (RNAi) was historically studied as a cytoplasmic event; however, in the last decade, a growing number of reports convincingly show the nuclear localization of the Argonaute (AGO) proteins. Nevertheless, the extent of nuclear RNAi and its implication in biological mechanisms remain to be elucidated. We found that reduced Lamin A levels significantly induce nuclear influx of AGO2 in SHSY5Y neuroblastoma and A375 melanoma cancer cell lines, which normally have no nuclear AGO2. Lamin A KO manifested a more pronounced effect in SHSY5Y cells compared to A375 cells, evident by changes in cell morphology, increased cell proliferation, and oncogenic miRNA expression. Moreover, AGO fPAR-CLIP in Lamin A KO SHSY5Y cells revealed significantly reduced RNAi activity. Further exploration of the nuclear AGO interactome by mass spectrometry identified FAM120A, an RNA-binding protein and known interactor of AGO2. Subsequent FAM120A fPAR-CLIP, revealed that FAM120A co-binds AGO targets and that this competition reduces the RNAi activity. Therefore, loss of Lamin A triggers nuclear AGO2 translocation, FAM120A mediated RNAi impairment, and upregulation of oncogenic miRNAs, facilitating cancer cell proliferation.
- MeSH
- aktivní transport - buněčné jádro MeSH
- Argonaut proteiny * metabolismus genetika MeSH
- buněčné jádro * metabolismus MeSH
- lamin typ A * metabolismus genetika MeSH
- lidé MeSH
- melanom genetika metabolismus patologie MeSH
- mikro RNA * metabolismus genetika MeSH
- nádorové buněčné linie MeSH
- proliferace buněk * genetika MeSH
- proteiny vázající RNA metabolismus genetika MeSH
- RNA interference * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND INFORMATION: Promyelocytic leukaemia (PML) bodies are specific nuclear structures with functional significance for acute promyelocytic leukaemia. In this study, we analysed the trajectories of PML bodies using single-particle tracking. RESULTS: We observed that the recovery of PML protein after photobleaching was ATP dependent in both wild-type (wt) and A-type lamin-deficient cells. The movement of PML bodies was faster and the nuclear area occupied by particular PML bodies was larger in A-type lamin-deficient fibroblasts compared with their wt counterparts. Moreover, dysfunction of the LMNA gene increased the frequency of mutual interactions between individual PML bodies and influenced the morphology of these domains at the ultrastructural level. As a consequence of A-type lamin deficiency, PML protein accumulated in nuclear blebs and frequently appeared at the nuclear periphery. CONCLUSIONS: We suggest that the physiological function of lamin A proteins is important for events that occur in the compartment of PML bodies. This observation was confirmed in other experimental models characterised by lamin changes, including apoptosis or the differentiation of mouse embryonic stem cells.
- MeSH
- akutní promyelocytární leukemie metabolismus MeSH
- apoptóza MeSH
- embryo savčí cytologie MeSH
- embryonální kmenové buňky cytologie metabolismus MeSH
- fibroblasty cytologie metabolismus ultrastruktura MeSH
- FRAP MeSH
- intranukleární inkluzní tělíska metabolismus ultrastruktura MeSH
- kinetika MeSH
- lamin typ A nedostatek metabolismus MeSH
- myši MeSH
- reprodukovatelnost výsledků MeSH
- zelené fluorescenční proteiny metabolismus MeSH
- zvířata MeSH
- Check Tag
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH